On the Crossing of Maximal Subgroups of Finite Groups

被引:0
|
作者
R. V. Borodich
机构
[1] Skorina Gomel’ State University,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We establish the structure of normal subgroups in θ-Frattini extensions, where θ is a subgroup functor. For a local Fitting structure F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{F} $$\end{document} containing all nilpotent groups, it is shown that, in a soluble group, the crossing of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{F} $$\end{document}-abnormal maximal θ -subgroups not containing F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{F} $$\end{document}-radicals and not belonging to F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{F} $$\end{document} coincides with the crossing of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{F} $$\end{document}-abnormal maximal θ -subgroups and belongs to the structure of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{F} $$\end{document}.
引用
收藏
页码:1664 / 1676
页数:12
相关论文
共 50 条
  • [31] Finite groups with abelian second maximal subgroups
    Meng, Wei
    Chen, Wei
    Lu, Jiakuan
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (04) : 1577 - 1583
  • [32] Maximal and Sylow subgroups of solvable finite groups
    Monakhov, VS
    Gribovskaya, EE
    MATHEMATICAL NOTES, 2001, 70 (3-4) : 545 - 552
  • [33] Finite groups with decomposable cofactors of maximal subgroups
    Lemeshev, I. V.
    Monakhov, V. S.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2011, 17 (04): : 181 - 188
  • [34] ON MAXIMAL-SUBGROUPS OF FINITE-GROUPS
    BALLESTERBOLINCHES, A
    EZQUERRO, LM
    COMMUNICATIONS IN ALGEBRA, 1991, 19 (08) : 2373 - 2394
  • [35] Finite Groups with Arithmetic Restrictions on Maximal Subgroups
    N. V. Maslova
    Algebra and Logic, 2015, 54 : 65 - 69
  • [36] Maximal and Sylow Subgroups of Solvable Finite Groups
    V. S. Monakhov
    E. E. Gribovskaya
    Mathematical Notes, 2001, 70 : 545 - 552
  • [37] Bounds on the Number of Maximal Subgroups of Finite Groups
    Ballester-Bolinches, Adolfo
    Esteban-Romero, Ramon
    Jimenez-Seral, Paz
    RESULTS IN MATHEMATICS, 2023, 78 (01)
  • [38] FINITE INSOLUBLE GROUPS WITH NILPOTENT MAXIMAL SUBGROUPS
    ROSE, JS
    JOURNAL OF ALGEBRA, 1977, 48 (01) : 182 - 196
  • [39] Maximal orthogonal subgroups of finite unitary groups
    Cossidente, A
    King, OH
    JOURNAL OF GROUP THEORY, 2004, 7 (04) : 447 - 462
  • [40] FINITE GROUPS WITH SOLVABLE OR Φ-SIMPLE MAXIMAL SUBGROUPS
    Bazhanova, E. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (04) : 611 - 619