Affine-invariant strictly cyclic Steiner quadruple systems

被引:0
|
作者
Xiao-Nan Lu
Masakazu Jimbo
机构
[1] Nagoya University,Graduate School of Information Science
[2] Chubu University,College of Contemporary Education
来源
关键词
sSQS; Affine group; Projective linear group; 1-Factor; 2-Chromatic SQS; Recursive construction; Optical orthogonal code; 05B05; 05C25; 94B25;
D O I
暂无
中图分类号
学科分类号
摘要
To determine the spectrum of Steiner quadruple systems (SQS) admitting a specific automorphism group is of great interest in design theory. We consider a strictly cyclic SQS which is invariant under the affine group, called an AsSQS. For the applications of designs of experiments, group testing, filing schemes, authentication codes, and optical orthogonal codes for CDMA communication, etc., a larger automorphism group containing the cyclic group may work efficiently for the procedures of generating and searching blocks in a design with less storage and time. In this paper, constructions and a necessary condition for the existence of an AsSQS are investigated. For a prime p≡1(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \equiv 1 \;({\hbox {mod}}\; 4)$$\end{document}, Direct Construction A establishes an AsSQS(2p), provided that a 1-factor of a graph exists, where the graph is defined by using a system of generators of the projective special linear group PSL(2, p). Direct Construction B gives an AsSQS(2p) which is 2-chromatic, provided that a rainbow 1-factor of a specific hypergraph exists. Accordingly, by proposing two recursive constructions of an AsSQSs(2pm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2p^m)$$\end{document} for a positive integer m, we prove that an AsSQS(2pm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2p^m)$$\end{document} exists, if the criteria developed for an AsSQS(2p) are satisfied. We verified the claim and found that an AsSQS(2pm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2p^m)$$\end{document} exists for every prime p≡1(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \equiv 1 \;({\hbox {mod}}\; 4)$$\end{document} with p<105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p < 10^5$$\end{document} and any positive integer m.
引用
收藏
页码:33 / 69
页数:36
相关论文
共 50 条
  • [41] New features for affine-invariant shape classification
    Dionisio, CRP
    Kim, HY
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 2135 - 2138
  • [42] Affine-invariant character recognition by progressive removing
    Iwamura, Masakazu
    Horimatsu, Akira
    Niwa, Ryo
    Kise, Koichi
    Uchida, Seiichi
    Omachi, Shinichiro
    ELECTRICAL ENGINEERING IN JAPAN, 2012, 180 (02) : 55 - 63
  • [43] Multiresolution tangent distance for affine-invariant classification
    Vasconcelos, N
    Lippman, A
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 10, 1998, 10 : 843 - 849
  • [44] A New Approach for Affine-invariant Image Matching
    Chen, Wenlong
    Xiao, Baihua
    Wang, Chunheng
    ADVANCES IN MECHATRONICS, AUTOMATION AND APPLIED INFORMATION TECHNOLOGIES, PTS 1 AND 2, 2014, 846-847 : 1019 - 1023
  • [45] Probabilistic Tracking of Affine-Invariant Anisotropic Regions
    Giannarou, Stamatia
    Visentini-Scarzanella, Marco
    Yang, Guang-Zhong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (01) : 130 - 143
  • [46] Estimating affine-invariant structures on triangle meshes
    Vieira, Thales
    Martinez, Dimas
    Andrade, Maria
    Lewiner, Thomas
    COMPUTERS & GRAPHICS-UK, 2016, 60 : 83 - 92
  • [47] Testing Low Complexity Affine-Invariant Properties
    Bhattacharyya, Arnab
    Fischer, Eldar
    Lovett, Shachar
    PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA 2013), 2013, : 1337 - 1355
  • [48] OPTIMAL AFFINE-INVARIANT SMOOTH MINIMIZATION ALGORITHMS
    d'Aspremont, Alexandre
    Guzman, Cristobal
    Jaggi, Martin
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (03) : 2384 - 2405
  • [49] Hausdorff dimensions of sofic affine-invariant sets
    R. Kenyon
    Y. Peres
    Israel Journal of Mathematics, 1997, 97 : 347 - 347
  • [50] SOME APPLICATIONS OF A CLASSIFICATION OF AFFINE-INVARIANT CODES
    CHARPIN, P
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 356 : 151 - 160