Affine-invariant strictly cyclic Steiner quadruple systems

被引:0
|
作者
Xiao-Nan Lu
Masakazu Jimbo
机构
[1] Nagoya University,Graduate School of Information Science
[2] Chubu University,College of Contemporary Education
来源
关键词
sSQS; Affine group; Projective linear group; 1-Factor; 2-Chromatic SQS; Recursive construction; Optical orthogonal code; 05B05; 05C25; 94B25;
D O I
暂无
中图分类号
学科分类号
摘要
To determine the spectrum of Steiner quadruple systems (SQS) admitting a specific automorphism group is of great interest in design theory. We consider a strictly cyclic SQS which is invariant under the affine group, called an AsSQS. For the applications of designs of experiments, group testing, filing schemes, authentication codes, and optical orthogonal codes for CDMA communication, etc., a larger automorphism group containing the cyclic group may work efficiently for the procedures of generating and searching blocks in a design with less storage and time. In this paper, constructions and a necessary condition for the existence of an AsSQS are investigated. For a prime p≡1(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \equiv 1 \;({\hbox {mod}}\; 4)$$\end{document}, Direct Construction A establishes an AsSQS(2p), provided that a 1-factor of a graph exists, where the graph is defined by using a system of generators of the projective special linear group PSL(2, p). Direct Construction B gives an AsSQS(2p) which is 2-chromatic, provided that a rainbow 1-factor of a specific hypergraph exists. Accordingly, by proposing two recursive constructions of an AsSQSs(2pm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2p^m)$$\end{document} for a positive integer m, we prove that an AsSQS(2pm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2p^m)$$\end{document} exists, if the criteria developed for an AsSQS(2p) are satisfied. We verified the claim and found that an AsSQS(2pm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2p^m)$$\end{document} exists for every prime p≡1(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \equiv 1 \;({\hbox {mod}}\; 4)$$\end{document} with p<105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p < 10^5$$\end{document} and any positive integer m.
引用
收藏
页码:33 / 69
页数:36
相关论文
共 50 条
  • [21] QUANTUM DUADIC AND AFFINE-INVARIANT CODES
    Guenda, Kenza
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (01) : 373 - 384
  • [22] Isotropic PCA and Affine-Invariant Clustering
    Brubaker, S. Charles
    Vempala, Santosh S.
    PROCEEDINGS OF THE 49TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2008, : 551 - 560
  • [23] Distributed Affine-Invariant MCMC Sampler
    Nemeth, Balazs
    Haber, Tom
    Liesenborgs, Jori
    Lamotte, Wim
    2017 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER), 2017, : 520 - 524
  • [24] Decoding of Lifted Affine-Invariant Codes
    Holzbaur, Lukas
    Polyanskii, Nikita
    2020 IEEE INFORMATION THEORY WORKSHOP (ITW), 2021,
  • [25] PERMUTATION GROUP OF AFFINE-INVARIANT CODES
    BERGER, TP
    CHARPIN, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (10): : 1383 - 1387
  • [26] Affine-invariant WENO weights and operator
    Wang, Bao-Shan
    Don, Wai Sun
    Applied Numerical Mathematics, 2022, 181 : 630 - 646
  • [27] Affine-invariant conditions of topological discrimination of quadratic Hamilton differential systems
    Kalin, YF
    Vulpe, NI
    DIFFERENTIAL EQUATIONS, 1998, 34 (03) : 297 - 301
  • [28] LAM: Locality affine-invariant feature matching
    Li, Jiayuan
    Hu, Qingwu
    Ai, Mingyao
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 154 : 28 - 40
  • [29] Affine-invariant distances, envelopes and symmetry sets
    Giblin, PJ
    Sapiro, G
    GEOMETRIAE DEDICATA, 1998, 71 (03) : 237 - 261
  • [30] Measures of full dimension on affine-invariant sets
    Kenyon, R
    Peres, Y
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1996, 16 : 307 - 323