Affine-invariant strictly cyclic Steiner quadruple systems

被引:0
|
作者
Xiao-Nan Lu
Masakazu Jimbo
机构
[1] Nagoya University,Graduate School of Information Science
[2] Chubu University,College of Contemporary Education
来源
关键词
sSQS; Affine group; Projective linear group; 1-Factor; 2-Chromatic SQS; Recursive construction; Optical orthogonal code; 05B05; 05C25; 94B25;
D O I
暂无
中图分类号
学科分类号
摘要
To determine the spectrum of Steiner quadruple systems (SQS) admitting a specific automorphism group is of great interest in design theory. We consider a strictly cyclic SQS which is invariant under the affine group, called an AsSQS. For the applications of designs of experiments, group testing, filing schemes, authentication codes, and optical orthogonal codes for CDMA communication, etc., a larger automorphism group containing the cyclic group may work efficiently for the procedures of generating and searching blocks in a design with less storage and time. In this paper, constructions and a necessary condition for the existence of an AsSQS are investigated. For a prime p≡1(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \equiv 1 \;({\hbox {mod}}\; 4)$$\end{document}, Direct Construction A establishes an AsSQS(2p), provided that a 1-factor of a graph exists, where the graph is defined by using a system of generators of the projective special linear group PSL(2, p). Direct Construction B gives an AsSQS(2p) which is 2-chromatic, provided that a rainbow 1-factor of a specific hypergraph exists. Accordingly, by proposing two recursive constructions of an AsSQSs(2pm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2p^m)$$\end{document} for a positive integer m, we prove that an AsSQS(2pm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2p^m)$$\end{document} exists, if the criteria developed for an AsSQS(2p) are satisfied. We verified the claim and found that an AsSQS(2pm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2p^m)$$\end{document} exists for every prime p≡1(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \equiv 1 \;({\hbox {mod}}\; 4)$$\end{document} with p<105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p < 10^5$$\end{document} and any positive integer m.
引用
收藏
页码:33 / 69
页数:36
相关论文
共 50 条
  • [1] Affine-invariant strictly cyclic Steiner quadruple systems
    Lu, Xiao-Nan
    Jimbo, Masakazu
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 83 (01) : 33 - 69
  • [2] On Affine-Invariant Two-Fold Quadruple Systems
    Xiao-Nan Lu
    Graphs and Combinatorics, 2015, 31 : 1915 - 1927
  • [3] On Affine-Invariant Two-Fold Quadruple Systems
    Lu, Xiao-Nan
    GRAPHS AND COMBINATORICS, 2015, 31 (06) : 1915 - 1927
  • [4] INFINITE FAMILIES OF STRICTLY CYCLIC STEINER QUADRUPLE SYSTEMS
    SIEMON, H
    DISCRETE MATHEMATICS, 1989, 77 (1-3) : 307 - 316
  • [5] There Are Not Non-obvious Cyclic Affine-invariant Codes
    Joaquin Bernal, Jose
    del Rio, Angel
    Jacobo Simon, Juan
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS, AND ERROR-CORRECTING CODES, 2009, 5527 : 101 - 106
  • [6] The permutation group of affine-invariant extended cyclic codes
    Berger, TP
    Charpin, P
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (06) : 2194 - 2209
  • [7] Classification of Cyclic Steiner Quadruple Systems
    Chang, Yanxun
    Fan, Bingli
    Feng, Tao
    Holt, Derek F.
    Ostergard, Patric R. J.
    JOURNAL OF COMBINATORIAL DESIGNS, 2017, 25 (03) : 103 - 121
  • [8] Affine-invariant curve matching
    Zuliani, M
    Bhagavathy, S
    Manjunath, BS
    Kenney, CS
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 3041 - 3044
  • [9] Affine-Invariant Midrange Statistics
    Mostajeran, Cyrus
    Grussler, Christian
    Sepulchre, Rodolphe
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 494 - 501
  • [10] AFFINE-INVARIANT SCENE CATEGORIZATION
    Wei, Xue
    Phung, Son Lam
    Bouzerdoum, Abdesselam
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 1031 - 1035