Extremal Problems Involving the Two Largest Complementarity Eigenvalues of a Graph

被引:0
|
作者
Alberto Seeger
David Sossa
机构
[1] University of Avignon,Department of Mathematics
[2] Universidad de O’Higgins,Instituto de Ciencias de la Ingeniería
来源
Graphs and Combinatorics | 2020年 / 36卷
关键词
Complementarity eigenvalue; Connected graph; Spectral radius; Second largest complementarity eigenvalue; Connected induced subgraph; Graph perturbation; 05C50; 15A42;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with various extremal problems involving two important parameters associated to a connected graph, say G. The first parameter is the largest complementarity eigenvalue: it is denoted by ϱ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho (G)$$\end{document} and it is simply the spectral radius or index of the graph. Next in importance comes the second largest complementarity eigenvalue: it is denoted by ϱ2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho _2(G)$$\end{document} and it is equal to the largest spectral radius among the children of G. By definition, a child or vertex-deleted connected subgraph of G is an induced subgraph obtained by removing a noncut vertex from G. In the first part of this work, we address the problem of identifying the eldest children and the youngest parents of G. We also analyze the uniqueness of such children and parents. An eldest child of G is a child whose spectral radius attains the value ϱ2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho _2(G)$$\end{document}. The concept of youngest parent is somewhat dual to that of eldest child. The second part of this work is about minimization and maximization of the functions ϱ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho _2$$\end{document} and ϱ-ϱ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho -\varrho _2$$\end{document} on special classes of connected graphs. We establish several new results and propose a number of conjectures.
引用
收藏
页码:1 / 25
页数:24
相关论文
共 50 条
  • [1] Extremal Problems Involving the Two Largest Complementarity Eigenvalues of a Graph
    Seeger, Alberto
    Sossa, David
    GRAPHS AND COMBINATORICS, 2020, 36 (01) : 1 - 25
  • [2] The largest two Laplacian eigenvalues of a graph
    Das, KC
    LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (06): : 441 - 460
  • [3] On the two largest distance eigenvalues of graph powers
    Xing, Rundan
    Zhou, Bo
    INFORMATION PROCESSING LETTERS, 2017, 119 : 39 - 43
  • [4] EXTREMAL GRAPHS FOR THE SUM OF THE TWO LARGEST SIGNLESS LAPLACIAN EIGENVALUES
    Oliveira, Carla Silva
    de Lima, Leonardo
    Rama, Paula
    Carvalho, Paula
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 : 605 - 612
  • [6] Complementarity eigenvalues and graph determination
    Seeger, Alberto
    Sossa, David
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2022, 84 : 220 - 237
  • [7] EXTREMAL GRAPH REALIZATIONS AND GRAPH LAPLACIAN EIGENVALUES
    Osting, Braxton
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (03) : 1630 - 1644
  • [8] On the sum of the first two largest signless Laplacian eigenvalues of a graph
    Zhou, Zi-Ming
    He, Chang-Xiang
    Shan, Hai-Ying
    DISCRETE MATHEMATICS, 2024, 347 (09)
  • [9] On the spectrum of an extremal graph with four eigenvalues
    Fiol, M. A.
    Garriga, E.
    DISCRETE MATHEMATICS, 2006, 306 (18) : 2241 - 2244
  • [10] Extremal properties of eigenvalues for a metric graph
    Friedlander, L
    ANNALES DE L INSTITUT FOURIER, 2005, 55 (01) : 199 - +