Extremal Problems Involving the Two Largest Complementarity Eigenvalues of a Graph

被引:0
|
作者
Alberto Seeger
David Sossa
机构
[1] University of Avignon,Department of Mathematics
[2] Universidad de O’Higgins,Instituto de Ciencias de la Ingeniería
来源
Graphs and Combinatorics | 2020年 / 36卷
关键词
Complementarity eigenvalue; Connected graph; Spectral radius; Second largest complementarity eigenvalue; Connected induced subgraph; Graph perturbation; 05C50; 15A42;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with various extremal problems involving two important parameters associated to a connected graph, say G. The first parameter is the largest complementarity eigenvalue: it is denoted by ϱ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho (G)$$\end{document} and it is simply the spectral radius or index of the graph. Next in importance comes the second largest complementarity eigenvalue: it is denoted by ϱ2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho _2(G)$$\end{document} and it is equal to the largest spectral radius among the children of G. By definition, a child or vertex-deleted connected subgraph of G is an induced subgraph obtained by removing a noncut vertex from G. In the first part of this work, we address the problem of identifying the eldest children and the youngest parents of G. We also analyze the uniqueness of such children and parents. An eldest child of G is a child whose spectral radius attains the value ϱ2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho _2(G)$$\end{document}. The concept of youngest parent is somewhat dual to that of eldest child. The second part of this work is about minimization and maximization of the functions ϱ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho _2$$\end{document} and ϱ-ϱ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho -\varrho _2$$\end{document} on special classes of connected graphs. We establish several new results and propose a number of conjectures.
引用
收藏
页码:1 / 25
页数:24
相关论文
共 50 条
  • [21] The maximum multiplicity and the two largest multiplicities of eigenvalues in a Hermitian matrix whose graph is a tree
    Fernandes, Rosario
    SPECIAL MATRICES, 2015, 3 (01): : 1 - 17
  • [22] EXTREMAL PROBLEMS FOR EIGENVALUES OF MEASURE DIFFERENTIAL EQUATIONS
    Meng, Gang
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (05) : 1991 - 2002
  • [23] On the Second Smallest and the Largest Normalized Laplacian Eigenvalues of a Graph
    Xiao-guo TIAN
    Li-gong WANG
    You LU
    Acta Mathematicae Applicatae Sinica, 2021, 37 (03) : 628 - 644
  • [24] DIGRAPH EXTREMAL PROBLEMS, HYPERGRAPH EXTREMAL PROBLEMS, AND THE DENSITIES OF GRAPH STRUCTURES
    BROWN, WG
    SIMONOVITS, M
    DISCRETE MATHEMATICS, 1984, 48 (2-3) : 147 - 162
  • [25] Bounding the sum of the largest signless Laplacian eigenvalues of a graph
    Abiad, Aida
    de Lima, Leonardo
    Kalantarzadeh, Sina
    Mohammadi, Mona
    Oliveira, Carla
    DISCRETE APPLIED MATHEMATICS, 2023, 340 : 315 - 326
  • [26] On the Second Smallest and the Largest Normalized Laplacian Eigenvalues of a Graph
    Tian, Xiao-guo
    Wang, Li-gong
    Lu, You
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (03): : 628 - 644
  • [27] On the Second Smallest and the Largest Normalized Laplacian Eigenvalues of a Graph
    Xiao-guo Tian
    Li-gong Wang
    You Lu
    Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 : 628 - 644
  • [28] The general two-dimensional divisor problems involving Hecke eigenvalues
    Huang, Jing
    Li, Taiyu
    Liu, Huafeng
    Xu, Fuxia
    AIMS MATHEMATICS, 2022, 7 (04): : 6396 - 6403
  • [29] EXTREMAL PROBLEMS INVOLVING NEIGHBORHOOD UNIONS
    FAUDREE, RJ
    GOULD, RJ
    JACOBSON, MS
    SCHELP, RH
    JOURNAL OF GRAPH THEORY, 1987, 11 (04) : 555 - 564
  • [30] Some problems involving Hecke eigenvalues
    Liu, H. F.
    Zhang, R.
    ACTA MATHEMATICA HUNGARICA, 2019, 159 (01) : 287 - 298