Error estimates of finite element methods for fractional stochastic Navier–Stokes equations

被引:0
|
作者
Xiaocui Li
Xiaoyuan Yang
机构
[1] Beijing University of Chemical Technology,School of Science
[2] Beihang University,LMIB and School of Mathematics and Systems Science
关键词
Fractional stochastic Navier–Stokes equations; Finite element method; Error estimates; Strong convergence; 60N15; 65M60; 60N30; 75D05;
D O I
暂无
中图分类号
学科分类号
摘要
Based on the Itô’s isometry and the properties of the solution operator defined by the Mittag-Leffler function, this paper gives a detailed numerical analysis of the finite element method for fractional stochastic Navier–Stokes equations driven by white noise. The discretization in space is derived by the finite element method and the time discretization is obtained by the backward Euler scheme. The noise is approximated by using the generalized L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{2}$\end{document}-projection operator. Optimal strong convergence error estimates in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{2}$\end{document}-norm are obtained.
引用
收藏
相关论文
共 50 条
  • [1] Error estimates of finite element methods for fractional stochastic Navier-Stokes equations
    Li, Xiaocui
    Yang, Xiaoyuan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [2] Error Estimates of Mixed Finite Element Methods for Time-Fractional Navier–Stokes Equations
    Xiaocui Li
    Xiaoyuan Yang
    Yinghan Zhang
    Journal of Scientific Computing, 2017, 70 : 500 - 515
  • [3] Error Estimates of Mixed Finite Element Methods for Time-Fractional Navier-Stokes Equations
    Li, Xiaocui
    Yang, Xiaoyuan
    Zhang, Yinghan
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (02) : 500 - 515
  • [4] ERROR ESTIMATES OF FINITE ELEMENT METHODS FOR STOCHASTIC FRACTIONAL DIFFERENTIAL EQUATIONS
    Li, Xiaocui
    Yang, Xiaoyuan
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2017, 35 (03) : 346 - 362
  • [5] Error estimates of finite element methods for nonlinear fractional stochastic differential equations
    Zhang, Yanpeng
    Yang, Xiaoyuan
    Li, Xiaocui
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [6] Error estimates of finite element methods for nonlinear fractional stochastic differential equations
    Yanpeng Zhang
    Xiaoyuan Yang
    Xiaocui Li
    Advances in Difference Equations, 2018
  • [7] A POSTERIORI ERROR ESTIMATES FOR FINITE ELEMENT APPROXIMATION OF UNSTEADY INCOMPRESSIBLE STOCHASTIC NAVIER-STOKES EQUATIONS
    Yang, Xiaoyuan
    Duan, Yuanyuan
    Guo, Yuhua
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (04) : 1579 - 1600
  • [8] MIXED FINITE ELEMENT METHODS FOR FRACTIONAL NAVIER-STOKES EQUATIONS
    Li, Xiaocui
    You, Xu
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (01): : 130 - 146
  • [9] Finite element solution of Navier Stokes equations adapted to a priori error estimates
    Department of Mathematics, Czech University of Technology, Karlovo Namesti 13, CZ-121 35 Praha 2, Czech Republic
    不详
    WSEAS Trans. Math., 2006, 1 (188-195):
  • [10] Error estimates for finite element discretizations of the instationary Navier-Stokes equations
    Vexler, Boris
    Wagner, Jakob
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2024, 58 (02) : 457 - 488