Error estimates of finite element methods for fractional stochastic Navier–Stokes equations

被引:0
|
作者
Xiaocui Li
Xiaoyuan Yang
机构
[1] Beijing University of Chemical Technology,School of Science
[2] Beihang University,LMIB and School of Mathematics and Systems Science
关键词
Fractional stochastic Navier–Stokes equations; Finite element method; Error estimates; Strong convergence; 60N15; 65M60; 60N30; 75D05;
D O I
暂无
中图分类号
学科分类号
摘要
Based on the Itô’s isometry and the properties of the solution operator defined by the Mittag-Leffler function, this paper gives a detailed numerical analysis of the finite element method for fractional stochastic Navier–Stokes equations driven by white noise. The discretization in space is derived by the finite element method and the time discretization is obtained by the backward Euler scheme. The noise is approximated by using the generalized L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{2}$\end{document}-projection operator. Optimal strong convergence error estimates in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{2}$\end{document}-norm are obtained.
引用
收藏
相关论文
共 50 条