Finite element solution of Navier Stokes equations adapted to a priori error estimates

被引:0
|
作者
Department of Mathematics, Czech University of Technology, Karlovo Namesti 13, CZ-121 35 Praha 2, Czech Republic [1 ]
不详 [2 ]
机构
来源
WSEAS Trans. Math. | 2006年 / 1卷 / 188-195期
关键词
Navier Stokes equations;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Error estimates for finite element discretizations of the instationary Navier-Stokes equations
    Vexler, Boris
    Wagner, Jakob
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2024, 58 (02) : 457 - 488
  • [2] Error estimates for the finite element method of the chemotaxis-Navier–Stokes equations
    Zhenzhen Li
    Liuchao Xiao
    Minghao Li
    Hongru Chen
    Journal of Applied Mathematics and Computing, 2023, 69 : 3039 - 3065
  • [3] Error estimates for the finite element method of the chemotaxis-Navier-Stokes equations
    Li, Zhenzhen
    Xiao, Liuchao
    Li, Minghao
    Chen, Hongru
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (04) : 3039 - 3065
  • [4] Error estimates of finite element methods for fractional stochastic Navier–Stokes equations
    Xiaocui Li
    Xiaoyuan Yang
    Journal of Inequalities and Applications, 2018
  • [5] Explicit a posteriori and a priori error estimation for the finite element solution of Stokes equations
    Liu, Xuefeng
    Nakao, Mitsuhiro T.
    You, Chun'guang
    Oishi, Shin'ichi
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2021, 38 (02) : 545 - 559
  • [6] Explicit a posteriori and a priori error estimation for the finite element solution of Stokes equations
    Xuefeng Liu
    Mitsuhiro T. Nakao
    Chun’guang You
    Shin’ichi Oishi
    Japan Journal of Industrial and Applied Mathematics, 2021, 38 : 545 - 559
  • [7] Error estimates of finite element methods for fractional stochastic Navier-Stokes equations
    Li, Xiaocui
    Yang, Xiaoyuan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [8] A priori error estimates of a discontinuous Galerkin method for the Navier-Stokes equations
    Saumya Bajpai
    Deepjyoti Goswami
    Kallol Ray
    Numerical Algorithms, 2023, 94 : 937 - 1002
  • [9] A priori error estimates of a discontinuous Galerkin method for the Navier-Stokes equations
    Bajpai, Saumya
    Goswami, Deepjyoti
    Ray, Kallol
    NUMERICAL ALGORITHMS, 2023, 94 (02) : 937 - 1002
  • [10] Error estimates for the finite element method of the Navier-Stokes-Poisson-Nernst-Planck equations
    Li, Minghao
    Li, Zhenzhen
    APPLIED NUMERICAL MATHEMATICS, 2024, 197 : 186 - 209