Some inequalities related to Sobolev norms

被引:0
|
作者
Hoai-Minh Nguyen
机构
[1] NYU,Courant Institute
关键词
26D10; 26A54; 26D20; 26A24; 26A33; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study some properties related to the new characterizations of Sobolev spaces introduced in Bourgain and Nguyen (C R Acad Sci, 343:75–80, [2006]), Nguyen (J Funct Anal 237: 689–720, [2006]; J Eur Math Soc 10:191–229, [2008]). More precisely, we establish variants of the Poincaré inequality, the Sobolev inequality, and the Rellich–Kondrachov compactness theorem, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\int_{\mathbb{R}^N} |\nabla g|^p \;dx}$$\end{document} is replaced by some quantity of the type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\delta} (g) =\mathop{\int\limits_{\mathbb{R}^N}\int\limits_{\mathbb{R}^N}}_{|g(x) - g(y)| > \delta}\frac{\delta^p}{|x-y|^{N+p}}\, dx \, dy.$$\end{document}
引用
收藏
页码:483 / 509
页数:26
相关论文
共 50 条