Some inequalities related to Sobolev norms

被引:0
|
作者
Hoai-Minh Nguyen
机构
[1] NYU,Courant Institute
关键词
26D10; 26A54; 26D20; 26A24; 26A33; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study some properties related to the new characterizations of Sobolev spaces introduced in Bourgain and Nguyen (C R Acad Sci, 343:75–80, [2006]), Nguyen (J Funct Anal 237: 689–720, [2006]; J Eur Math Soc 10:191–229, [2008]). More precisely, we establish variants of the Poincaré inequality, the Sobolev inequality, and the Rellich–Kondrachov compactness theorem, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\int_{\mathbb{R}^N} |\nabla g|^p \;dx}$$\end{document} is replaced by some quantity of the type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\delta} (g) =\mathop{\int\limits_{\mathbb{R}^N}\int\limits_{\mathbb{R}^N}}_{|g(x) - g(y)| > \delta}\frac{\delta^p}{|x-y|^{N+p}}\, dx \, dy.$$\end{document}
引用
收藏
页码:483 / 509
页数:26
相关论文
共 50 条
  • [41] Some Inequalities in Classical Spaces with Mixed Norms
    Antonio Boccuto
    Alexander V. Bukhvalov
    Anna Rita Sambucini
    [J]. Positivity, 2002, 6 : 393 - 411
  • [42] Some inequalities for unitarily invariant norms of matrices
    Wang, Shaoheng
    Zou, Limin
    Jiang, Youyi
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [43] SOME HARDY TYPE INEQUALITIES WITH FINSLER NORMS
    Nguyen Tuan Duy
    [J]. MATHEMATICA SLOVACA, 2021, 71 (02) : 317 - 330
  • [44] Some sharp inequalities for norms in Rn and Cn
    Gerdjikov, Stefan
    Nikolov, Nikolai
    [J]. MONATSHEFTE FUR MATHEMATIK, 2024,
  • [45] A NOTE ON SOME INEQUALITIES FOR UNITARILY INVARIANT NORMS
    Xue, Jianming
    Hu, Xingkai
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (03): : 841 - 846
  • [46] Some inequalities for unitarily invariant norms of matrices
    Shaoheng Wang
    Limin Zou
    Youyi Jiang
    [J]. Journal of Inequalities and Applications, 2011
  • [47] SOME OPERATOR INEQUALITIES FOR UNITARILY INVARIANT NORMS
    Zhao, Jianguo
    Wu, Junliang
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2017, 8 (02): : 240 - 247
  • [48] SOME INEQUALITIES INVOLVING UNITARILY INVARIANT NORMS
    He, Chuanjiang
    Zou, Limin
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (04): : 767 - 776
  • [49] Explicit formulas for optimal rearrangement-invariant norms in Sobolev imbedding inequalities
    Kerman, Ron
    Pick, Lubos
    [J]. STUDIA MATHEMATICA, 2011, 206 (02) : 97 - 119
  • [50] Poincare-Sobolev inequalities with rearrangement-invariant norms on the entire space
    Mihula, Zdenek
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (3-4) : 1623 - 1640