Diameter and Broadcast Time of Random Geometric Graphs in Arbitrary Dimensions

被引:0
|
作者
Tobias Friedrich
Thomas Sauerwald
Alexandre Stauffer
机构
[1] Friedrich-Schiller-Universität Jena,
[2] Max-Planck-Institut für Informatik,undefined
[3] Microsoft Research,undefined
来源
Algorithmica | 2013年 / 67卷
关键词
Random geometric graphs; Diameter; Randomized rumor spreading;
D O I
暂无
中图分类号
学科分类号
摘要
A random geometric graph (RGG) is defined by placing n points uniformly at random in [0,n1/d]d, and joining two points by an edge whenever their Euclidean distance is at most some fixed r. We assume that r is larger than the critical value for the emergence of a connected component with Ω(n) nodes. We show that, with high probability (w.h.p.), for any two connected nodes with a Euclidean distance of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega (\frac{\log n}{r^{d-1}} )$\end{document}, their graph distance is only a constant factor larger than their Euclidean distance. This implies that the diameter of the largest connected component is Θ(n1/d/r) w.h.p. We also prove that the condition on the Euclidean distance above is essentially tight.
引用
收藏
页码:65 / 88
页数:23
相关论文
共 50 条
  • [1] Diameter and Broadcast Time of Random Geometric Graphs in Arbitrary Dimensions
    Friedrich, Tobias
    Sauerwald, Thomas
    Stauffer, Alexandre
    ALGORITHMICA, 2013, 67 (01) : 65 - 88
  • [2] Diameter and Broadcast Time of Random Geometric Graphs in Arbitrary Dimensions
    Friedrich, Tobias
    Sauerwald, Thomas
    Stauffer, Alexandre
    ALGORITHMS AND COMPUTATION, 2011, 7074 : 190 - +
  • [3] Efficient Broadcast on Random Geometric Graphs
    Bradonjic, Milan
    Elsasser, Robert
    Friedrich, Tobias
    Sauerwald, Thomas
    Stauffer, Alexandre
    PROCEEDINGS OF THE TWENTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2010, 135 : 1412 - +
  • [4] Stretch and Diameter in Random Geometric Graphs
    Ganesan, Ghurumuruhan
    ALGORITHMICA, 2018, 80 (01) : 300 - 330
  • [5] Stretch and Diameter in Random Geometric Graphs
    Ghurumuruhan Ganesan
    Algorithmica, 2018, 80 : 300 - 330
  • [6] Optimal broadcast domination of arbitrary graphs in polynomial time
    Heggernes, P
    Lokshtanov, D
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2005, 3787 : 187 - 198
  • [7] The Cover Time of Random Geometric Graphs
    Cooper, Colin
    Frieze, Alan
    RANDOM STRUCTURES & ALGORITHMS, 2011, 38 (03) : 324 - 349
  • [8] The cover time of random geometric graphs
    Cooper, Colin
    Frieze, Alan
    PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 48 - +
  • [9] On the cover time of random geometric graphs
    Avin, C
    Ercal, G
    AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2005, 3580 : 677 - 689
  • [10] Critical random graphs: Diameter and mixing time
    Nachmias, Asaf
    Peres, Yuval
    ANNALS OF PROBABILITY, 2008, 36 (04): : 1267 - 1286