The geodesics in Liouville quantum gravity are not Schramm–Loewner evolutions

被引:0
|
作者
Jason Miller
Wei Qian
机构
[1] University of Cambridge,Statistical Laboratory, Center for Mathematical Sciences
来源
关键词
Primary 60D05; Secondary 60J67;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the geodesics associated with any metric generated from Liouville quantum gravity (LQG) which satisfies certain natural hypotheses are necessarily singular with respect to the law of any type of SLEκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{SLE}_\kappa $$\end{document}. These hypotheses are satisfied by the LQG metric for γ=8/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma =\sqrt{8/3}$$\end{document} constructed by the first author and Sheffield, and subsequent work by Gwynne and the first author has shown that there is a unique metric which satisfies these hypotheses for each γ∈(0,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \in (0,2)$$\end{document}. As a consequence of our analysis, we also establish certain regularity properties of LQG geodesics which imply, among other things, that they are conformally removable.
引用
收藏
页码:677 / 709
页数:32
相关论文
共 50 条
  • [1] The geodesics in Liouville quantum gravity are not Schramm-Loewner evolutions
    Miller, Jason
    Qian, Wei
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 177 (3-4) : 677 - 709
  • [2] Schramm-Loewner Evolution and Liouville Quantum Gravity
    Duplantier, Bertrand
    Sheffield, Scott
    PHYSICAL REVIEW LETTERS, 2011, 107 (13)
  • [3] Liouville Quantum Gravity, KPZ and Schramm-Loewner Evolution
    Duplantier, Bertrand
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, : 1035 - 1061
  • [4] DUALITY OF SCHRAMM-LOEWNER EVOLUTIONS
    Dubedat, Julien
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2009, 42 (05): : 697 - 724
  • [5] On multiple Schramm-Loewner evolutions
    Graham, K.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
  • [6] Roughness of geodesics in Liouville quantum gravity
    Fan, Zherui
    Goswami, Subhajit
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 2194 - 2210
  • [7] Commutation relations for Schramm-Loewner evolutions
    Dubedat, Julien
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (12) : 1792 - 1847
  • [8] Multiple Schramm–Loewner Evolutions and Statistical Mechanics Martingales
    Michel Bauer
    Denis Bernard
    Kalle Kytölä
    Journal of Statistical Physics, 2005, 120 : 1125 - 1163
  • [9] On the Smoothness of the Partition Function for Multiple Schramm–Loewner Evolutions
    Mohammad Jahangoshahi
    Gregory F. Lawler
    Journal of Statistical Physics, 2018, 173 : 1353 - 1368
  • [10] Large deviations of Schramm-Loewner evolutions: A survey
    Wang, Yilin
    PROBABILITY SURVEYS, 2022, 19 : 351 - 403