Extendable orthogonal sets of integral vectors

被引:0
|
作者
Fernando Chamizo
Jorge Jiménez-Urroz
机构
[1] Universidad Autónoma de Madrid,Departamento de Matemáticas and ICMAT
[2] Universitat Politècnica de Catalunya,Departamento de Matemáticas
来源
关键词
Quaternions; Sums of squares; Orthogonality; Cayley numbers; Clifford algebras; 11D09; 11E25; 11D85;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by a model in quantum computation, we study orthogonal sets of integral vectors of the same norm that can be extended with new vectors keeping the norm and the orthogonality. Our approach involves some arithmetic properties of the quaternions and other hypercomplex numbers.
引用
收藏
相关论文
共 50 条
  • [41] Bethe Vectors for Orthogonal Integrable Models
    A. N. Liashyk
    S. Z. Pakuliak
    E. Ragoucy
    N. A. Slavnov
    Theoretical and Mathematical Physics, 2019, 201 : 1545 - 1564
  • [42] INTEGRAL ANALYTIC SETS
    BRYUNO, AD
    DOKLADY AKADEMII NAUK SSSR, 1975, 220 (06): : 1255 - 1258
  • [43] BETHE VECTORS FOR ORTHOGONAL INTEGRABLE MODELS
    Liashyk, A. N.
    Pakuliak, S. Z.
    Ragoucy, E.
    Slavnov, N. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 201 (02) : 1545 - 1564
  • [44] ORTHOGONAL GROUPS AND SYMMETRIC SETS
    NOBUSAWA, N
    OSAKA JOURNAL OF MATHEMATICS, 1983, 20 (01) : 5 - 8
  • [45] A note on orthogonal sets of hypercubes
    Evans, AB
    JOURNAL OF COMBINATORIAL DESIGNS, 1997, 5 (03) : 231 - 233
  • [46] On the orthogonal dimension of orbital sets
    da Silva, JAD
    Torres, MM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 401 : 77 - 107
  • [47] Julia Sets of Orthogonal Polynomials
    Jacob Stordal Christiansen
    Christian Henriksen
    Henrik Laurberg Pedersen
    Carsten Lunde Petersen
    Potential Analysis, 2019, 50 : 401 - 413
  • [48] Orthogonal polynomials generated by random vectors
    Withers, Christopher S.
    Nadarajah, Saralees
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (12) : 6130 - 6136
  • [49] Julia Sets of Orthogonal Polynomials
    Christiansen, Jacob Stordal
    Henriksen, Christian
    Pedersen, Henrik Laurberg
    Petersen, Carsten Lunde
    POTENTIAL ANALYSIS, 2019, 50 (03) : 401 - 413
  • [50] Orthogonal projections of discretized sets
    He, Weikun
    JOURNAL OF FRACTAL GEOMETRY, 2020, 7 (03) : 271 - 317