Extendable orthogonal sets of integral vectors

被引:0
|
作者
Fernando Chamizo
Jorge Jiménez-Urroz
机构
[1] Universidad Autónoma de Madrid,Departamento de Matemáticas and ICMAT
[2] Universitat Politècnica de Catalunya,Departamento de Matemáticas
来源
关键词
Quaternions; Sums of squares; Orthogonality; Cayley numbers; Clifford algebras; 11D09; 11E25; 11D85;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by a model in quantum computation, we study orthogonal sets of integral vectors of the same norm that can be extended with new vectors keeping the norm and the orthogonality. Our approach involves some arithmetic properties of the quaternions and other hypercomplex numbers.
引用
收藏
相关论文
共 50 条
  • [21] ORTHOGONAL VECTORS OF MOTION
    GOLOMB, M
    AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (05): : 465 - 466
  • [22] Generic partial two-point sets are extendable
    Dijkstra, JJ
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1999, 42 (01): : 46 - 51
  • [23] ON THE DENSITY OF SETS OF VECTORS
    ALON, N
    DISCRETE MATHEMATICS, 1983, 46 (02) : 199 - 202
  • [24] BALANCING SETS OF VECTORS
    Hegedus, Gabor
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2010, 47 (03) : 333 - 349
  • [25] BALANCING SETS OF VECTORS
    ALON, N
    BERGMANN, EE
    COPPERSMITH, D
    ODLYZKO, AM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (01) : 128 - 130
  • [26] ORTHOGONAL FAMILIES OF SETS
    MARICA, J
    CANADIAN MATHEMATICAL BULLETIN, 1971, 14 (04): : 573 - &
  • [27] Frame Potentials and Orthogonal Vectors
    Park, Josiah
    2019 13TH INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2019,
  • [28] A new construction of non-extendable intersecting families of sets
    Majumder, Kaushik
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (03):
  • [29] Non-extendable Zero Sets of Harmonic and Holomorphic Functions
    Gauthier, P. M.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (02): : 303 - 310
  • [30] Spear Vectors and Spear Sets
    Kadets, Vladimir
    Martin, Miguel
    Meri, Javier
    Perez, Antonio
    SPEAR OPERATORS BETWEEN BANACH SPACES, 2018, 2205 : 37 - 47