Symmetric implication zroupoids and weak associative laws

被引:0
|
作者
Juan M. Cornejo
Hanamantagouda P. Sankappanavar
机构
[1] Universidad Nacional del Sur,Departamento de Matemática
[2] INMABB - CONICET,Department of Mathematics
[3] State University of New York,undefined
来源
Soft Computing | 2019年 / 23卷
关键词
Symmetric implication zroupoid; Weak associative law; Identity of Bol–Moufang type; Semilattice with least element 0;
D O I
暂无
中图分类号
学科分类号
摘要
An algebra A=⟨A,→,0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {A}} = \langle A, \rightarrow , 0 \rangle $$\end{document}, where →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow $$\end{document} is binary and 0 is a constant, is called an implication zroupoid (I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {I}}$$\end{document}-zroupoid, for short) if A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {A}}$$\end{document} satisfies the identities: (x→y)→z≈((z′→x)→(y→z)′)′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x \rightarrow y) \rightarrow z \approx ((z' \rightarrow x) \rightarrow (y \rightarrow z)')'$$\end{document} and 0′′≈0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 0'' \approx 0$$\end{document}, where x′:=x→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x' := x \rightarrow 0$$\end{document}. An implication zroupoid is symmetric if it satisfies: x′′≈x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x'' \approx x$$\end{document} and (x→y′)′≈(y→x′)′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x \rightarrow y')' \approx (y \rightarrow x')'$$\end{document}. The variety of symmetric I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {I}}$$\end{document}-zroupoids is denoted by S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {S}}}$$\end{document}. We began a systematic analysis of weak associative laws (or identities) of length ≤4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le 4$$\end{document} in Cornejo and Sankappanavar (Soft Comput 22(13):4319–4333, 2018a. https://doi.org/10.1007/s00500-017-2869-z), by examining the identities of Bol–Moufang type, in the context of the variety S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {S}}}$$\end{document}. In this paper, we complete the analysis by investigating the rest of the weak associative laws of length ≤4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le 4$$\end{document} relative to S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {S}}}$$\end{document}. We show that, of the (possible) 155 subvarieties of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {S}}}$$\end{document} defined by the weak associative laws of length ≤4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le 4$$\end{document}, there are exactly 6 distinct ones. We also give an explicit description of the poset of the (distinct) subvarieties of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {S}}}$$\end{document} defined by weak associative laws of length ≤4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le 4$$\end{document}.
引用
收藏
页码:6797 / 6812
页数:15
相关论文
共 50 条
  • [1] Symmetric implication zroupoids and weak associative laws
    Cornejo, Juan M.
    Sankappanavar, Hanamantagouda P.
    SOFT COMPUTING, 2019, 23 (16) : 6797 - 6812
  • [2] Symmetric implication zroupoids and identities of Bol–Moufang type
    Juan M. Cornejo
    Hanamantagouda P. Sankappanavar
    Soft Computing, 2018, 22 : 4319 - 4333
  • [3] Symmetric implication zroupoids and identities of Bol-Moufang type
    Cornejo, Juan M.
    Sankappanavar, Hanamantagouda P.
    SOFT COMPUTING, 2018, 22 (13) : 4319 - 4333
  • [4] Order in Implication Zroupoids
    Cornejo, Juan M.
    Sankappanavar, Hanamantagouda P.
    STUDIA LOGICA, 2016, 104 (03) : 417 - 453
  • [5] Order in Implication Zroupoids
    Juan M. Cornejo
    Hanamantagouda P. Sankappanavar
    Studia Logica, 2016, 104 : 417 - 453
  • [6] Semisimple varieties of implication zroupoids
    Juan M. Cornejo
    Hanamantagouda P. Sankappanavar
    Soft Computing, 2016, 20 : 3139 - 3151
  • [7] Semisimple varieties of implication zroupoids
    Cornejo, Juan M.
    Sankappanavar, Hanamantagouda P.
    SOFT COMPUTING, 2016, 20 (08) : 3139 - 3151
  • [8] On derived algebras and subvarieties of implication zroupoids
    Juan M. Cornejo
    Hanamantagouda P. Sankappanavar
    Soft Computing, 2017, 21 : 6963 - 6982
  • [9] Semidistributivity and Whitman Property in implication zroupoids
    Cornejo, Juan M.
    Sankappanavar, Hanamantagouda P.
    MATHEMATICA SLOVACA, 2021, 71 (06) : 1329 - 1338
  • [10] On derived algebras and subvarieties of implication zroupoids
    Cornejo, Juan M.
    Sankappanavar, Hanamantagouda P.
    SOFT COMPUTING, 2017, 21 (23) : 6963 - 6982