Symmetric implication zroupoids and weak associative laws

被引:0
|
作者
Juan M. Cornejo
Hanamantagouda P. Sankappanavar
机构
[1] Universidad Nacional del Sur,Departamento de Matemática
[2] INMABB - CONICET,Department of Mathematics
[3] State University of New York,undefined
来源
Soft Computing | 2019年 / 23卷
关键词
Symmetric implication zroupoid; Weak associative law; Identity of Bol–Moufang type; Semilattice with least element 0;
D O I
暂无
中图分类号
学科分类号
摘要
An algebra A=⟨A,→,0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {A}} = \langle A, \rightarrow , 0 \rangle $$\end{document}, where →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow $$\end{document} is binary and 0 is a constant, is called an implication zroupoid (I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {I}}$$\end{document}-zroupoid, for short) if A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {A}}$$\end{document} satisfies the identities: (x→y)→z≈((z′→x)→(y→z)′)′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x \rightarrow y) \rightarrow z \approx ((z' \rightarrow x) \rightarrow (y \rightarrow z)')'$$\end{document} and 0′′≈0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 0'' \approx 0$$\end{document}, where x′:=x→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x' := x \rightarrow 0$$\end{document}. An implication zroupoid is symmetric if it satisfies: x′′≈x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x'' \approx x$$\end{document} and (x→y′)′≈(y→x′)′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x \rightarrow y')' \approx (y \rightarrow x')'$$\end{document}. The variety of symmetric I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {I}}$$\end{document}-zroupoids is denoted by S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {S}}}$$\end{document}. We began a systematic analysis of weak associative laws (or identities) of length ≤4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le 4$$\end{document} in Cornejo and Sankappanavar (Soft Comput 22(13):4319–4333, 2018a. https://doi.org/10.1007/s00500-017-2869-z), by examining the identities of Bol–Moufang type, in the context of the variety S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {S}}}$$\end{document}. In this paper, we complete the analysis by investigating the rest of the weak associative laws of length ≤4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le 4$$\end{document} relative to S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {S}}}$$\end{document}. We show that, of the (possible) 155 subvarieties of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {S}}}$$\end{document} defined by the weak associative laws of length ≤4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le 4$$\end{document}, there are exactly 6 distinct ones. We also give an explicit description of the poset of the (distinct) subvarieties of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {S}}}$$\end{document} defined by weak associative laws of length ≤4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le 4$$\end{document}.
引用
收藏
页码:6797 / 6812
页数:15
相关论文
共 50 条
  • [21] ASSOCIATIVE SUPERALGEBRAS WITH HOMOGENEOUS SYMMETRIC STRUCTURES
    Ayadi, Imen
    Benayadi, Said
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (04) : 1234 - 1259
  • [22] Symmetric polynomials in free associative algebras
    BOUMOVA, Silvia
    DRENSKY, Vesselin
    DZHUNDREKOV, Deyan
    KASSABOV, Martin
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (05) : 1674 - 1690
  • [23] Symmetric polynomials in free associative algebras
    Boumova, Silvia
    Drensky, Vesselin
    Dzhundrekov, Deyan
    Kassabov, Martin
    TURKISH JOURNAL OF MATHEMATICS, 2022,
  • [24] Sparsely symmetric interconnected associative memories
    Botoca, C
    NEUREL 2000: PROCEEDINGS OF THE 5TH SEMINAR ON NEURAL NETWORK APPLICATIONS IN ELECTRICAL ENGINEERING, 2000, : 113 - 116
  • [25] Weakly Associative and Symmetric Leibniz Algebras
    Remm, Elisabeth
    JOURNAL OF LIE THEORY, 2022, 32 (04) : 1171 - 1186
  • [26] WEAK IMPLICATION - THEORY AND APPLICATIONS
    KWAST, KL
    VANDENNEHEUVEL, S
    LECTURE NOTES IN ARTIFICIAL INTELLIGENCE, 1992, 633 : 65 - 83
  • [27] Weak Implication and Fuzzy Inclusion
    Scozzafava, Romano
    PREFERENCES AND DECISIONS: MODELS AND APPLICATIONS, 2010, 257 : 377 - 382
  • [28] WEAK LOGICS WITH STRICT IMPLICATION
    CORSI, G
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1987, 33 (05): : 389 - 406
  • [29] Prefrontal dysfunction in schizophrenia: implication in associative recognition
    Montoya, A.
    Pelletier, M.
    Achim, A. M.
    Lal, S.
    Lepage, M.
    ACTAS ESPANOLAS DE PSIQUIATRIA, 2007, 35 (03): : 176 - 181
  • [30] Lack of associative filters in lattice implication algebras
    Masoud Haveshki
    Mahboobeh Mohamadhasani
    Soft Computing, 2012, 16 : 737 - 738