Order in Implication Zroupoids

被引:0
|
作者
Juan M. Cornejo
Hanamantagouda P. Sankappanavar
机构
[1] Universidad Nacional del Sur,INMABB
[2] State University of New York, CONICET, Departamento de Matemática
来源
Studia Logica | 2016年 / 104卷
关键词
Implication zroupoid; Partial order; Boolean algebra; De Morgan algebra; The variety ; finite ; -chain;
D O I
暂无
中图分类号
学科分类号
摘要
The variety I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{I}}$$\end{document} of implication zroupoids (using a binary operation →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\to}$$\end{document} and a constant 0) was defined and investigated by Sankappanavar (Scientia Mathematica Japonica 75(1):21–50, 2012), as a generalization of De Morgan algebras. Also, in Sankappanavar (Scientia Mathematica Japonica 75(1):21–50, 2012), several subvarieties of I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{I}}$$\end{document} were introduced, including the subvariety I2,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{I_{2,0}}}$$\end{document}, defined by the identity: x″≈x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x^{\prime \prime}\approx x}$$\end{document}, which plays a crucial role in this paper. Some more new subvarieties of I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{I}}$$\end{document} are studied in Cornejo and Sankappanavar (Algebra Univ, 2015) that includes the subvariety SL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{SL}}$$\end{document} of semilattices with a least element 0. An explicit description of semisimple subvarieties of I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{I}}$$\end{document} is given in Cornejo and Sankappanavar (Soft Computing, 2015). It is a well known fact that there is a partial order (denote it by ⊑\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sqsubseteq}$$\end{document}) induced by the operation ∧, both in the variety SL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{SL}}$$\end{document} of semilattices with a least element and in the variety DM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{DM}}$$\end{document} of De Morgan algebras. As both SL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{SL}}$$\end{document} and DM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{DM}}$$\end{document} are subvarieties of I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{I}}$$\end{document} and the definition of partial order can be expressed in terms of the implication and the constant, it is but natural to ask whether the relation ⊑\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sqsubseteq}$$\end{document} on I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{I}}$$\end{document} is actually a partial order in some (larger) subvariety of I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{I}}$$\end{document} that includes both SL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{SL}}$$\end{document} and DM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{DM}}$$\end{document}. The purpose of the present paper is two-fold: Firstly, a complete answer is given to the above mentioned problem. Indeed, our first main theorem shows that the variety I2,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{I_{2,0}}}$$\end{document} is a maximal subvariety of I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{I}}$$\end{document} with respect to the property that the relation ⊑\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sqsubseteq}$$\end{document} is a partial order on its members. In view of this result, one is then naturally led to consider the problem of determining the number of non-isomorphic algebras in I2,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{I_{2,0}}}$$\end{document} that can be defined on an n-element chain (herein called I2,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{I_{2,0}}}$$\end{document}-chains), n being a natural number. Secondly, we answer this problem in our second main theorem which says that, for each n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \in \mathbb{N}}$$\end{document}, there are exactly n nonisomorphic I2,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{I_{2,0}}}$$\end{document}-chains of size n.
引用
收藏
页码:417 / 453
页数:36
相关论文
共 50 条
  • [1] Order in Implication Zroupoids
    Cornejo, Juan M.
    Sankappanavar, Hanamantagouda P.
    STUDIA LOGICA, 2016, 104 (03) : 417 - 453
  • [2] Semisimple varieties of implication zroupoids
    Juan M. Cornejo
    Hanamantagouda P. Sankappanavar
    Soft Computing, 2016, 20 : 3139 - 3151
  • [3] Semisimple varieties of implication zroupoids
    Cornejo, Juan M.
    Sankappanavar, Hanamantagouda P.
    SOFT COMPUTING, 2016, 20 (08) : 3139 - 3151
  • [4] On derived algebras and subvarieties of implication zroupoids
    Juan M. Cornejo
    Hanamantagouda P. Sankappanavar
    Soft Computing, 2017, 21 : 6963 - 6982
  • [5] Semidistributivity and Whitman Property in implication zroupoids
    Cornejo, Juan M.
    Sankappanavar, Hanamantagouda P.
    MATHEMATICA SLOVACA, 2021, 71 (06) : 1329 - 1338
  • [6] On derived algebras and subvarieties of implication zroupoids
    Cornejo, Juan M.
    Sankappanavar, Hanamantagouda P.
    SOFT COMPUTING, 2017, 21 (23) : 6963 - 6982
  • [7] Symmetric implication zroupoids and weak associative laws
    Juan M. Cornejo
    Hanamantagouda P. Sankappanavar
    Soft Computing, 2019, 23 : 6797 - 6812
  • [8] Symmetric implication zroupoids and weak associative laws
    Cornejo, Juan M.
    Sankappanavar, Hanamantagouda P.
    SOFT COMPUTING, 2019, 23 (16) : 6797 - 6812
  • [9] Symmetric implication zroupoids and identities of Bol–Moufang type
    Juan M. Cornejo
    Hanamantagouda P. Sankappanavar
    Soft Computing, 2018, 22 : 4319 - 4333
  • [10] Symmetric implication zroupoids and identities of Bol-Moufang type
    Cornejo, Juan M.
    Sankappanavar, Hanamantagouda P.
    SOFT COMPUTING, 2018, 22 (13) : 4319 - 4333