Occupation Times of Refracted Lévy Processes

被引:0
|
作者
A. E. Kyprianou
J. C. Pardo
J. L. Pérez
机构
[1] University of Bath,Department of Mathematical Sciences
[2] Centro de Investigación en Matemáticas,Department of Statistics
[3] ITAM,undefined
来源
关键词
Occupation times; Fluctuation theory; Refracted Lévy processes; 60G51;
D O I
暂无
中图分类号
学科分类号
摘要
A refracted Lévy process is a Lévy process whose dynamics change by subtracting off a fixed linear drift (of suitable size) whenever the aggregate process is above a pre-specified level. More precisely, whenever it exists, a refracted Lévy process is described by the unique strong solution to the stochastic differential equation dUt=−δ1{Ut>b}dt+dXt,t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathrm{d}}U_t=-\delta \mathbf 1 _{\{U_t>b\}}{\mathrm{d}}t +{\mathrm{d}}X_t,\quad t\ge 0 \end{aligned}$$\end{document}where X=(Xt,t≥0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=(X_t, t\ge 0)$$\end{document} is a Lévy process with law P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{P }$$\end{document} and b,δ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b,\delta \in \mathbb{R }$$\end{document} such that the resulting process U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U$$\end{document} may visit the half line (b,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(b,\infty )$$\end{document} with positive probability. In this paper, we consider the case that X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} is spectrally negative and establish a number of identities for the following functionals ∫0∞1{Ut<b}dt,∫0κc+1{Ut<b}dt,∫0κa−1{Ut<b}dt,∫0κc+∧κa−1{Ut<b}dt,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int \limits _0^\infty \mathbf 1 _{\{U_t<b\}}{\mathrm{d}}t, \quad \int \limits _0^{\kappa _c^+}\mathbf 1 _{\{U_t<b\}}{\mathrm{d}}t, \quad \int \limits _0^{\kappa ^-_a}\mathbf 1 _{\{U_t<b\}}{\mathrm{d}}t, \quad \int \limits _0^{\kappa _c^+\wedge \kappa ^-_a}\mathbf 1 _{\{U_t<b\}}{\mathrm{d}}t, \end{aligned}$$\end{document}where κc+=inf{t≥0:Ut>c}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa ^+_c=\inf \{t\ge 0: U_t> c\}$$\end{document} and κa−=inf{t≥0:Ut<a}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa ^-_a=\inf \{t\ge 0: U_t< a\}$$\end{document} for a<b<c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a<b<c$$\end{document}. Our identities extend recent results of Landriault et al. (Stoch Process Appl 121:2629–2641, 2011) and bear relevance to Parisian-type financial instruments and insurance scenarios.
引用
收藏
页码:1292 / 1315
页数:23
相关论文
共 50 条
  • [41] A Construction of Reflecting Lévy Processes
    I. A. Ibragimov
    N. V. Smorodina
    M. M. Faddeev
    Doklady Mathematics, 2019, 99 : 71 - 74
  • [42] The multifractal nature of Lévy processes
    Stéphane Jaffard
    Probability Theory and Related Fields, 1999, 114 : 207 - 227
  • [43] Large deviations for occupation times of Markov processes with L2 semigroups
    Jain, Naresh
    Krylov, Nicolai
    ANNALS OF PROBABILITY, 2008, 36 (05): : 1611 - 1641
  • [44] On Exponential Functionals of Lévy Processes
    Anita Behme
    Alexander Lindner
    Journal of Theoretical Probability, 2015, 28 : 681 - 720
  • [45] Singularity sets of Lévy processes
    Arnaud Durand
    Probability Theory and Related Fields, 2009, 143 : 517 - 544
  • [46] Precise Asymptotics for Lévy Processes
    Zhi Shui HU
    Chun SU
    Acta Mathematica Sinica,English Series, 2007, 23 (07) : 1265 - 1270
  • [47] On Exponential Functionals of L,vy Processes
    Behme, Anita
    Lindner, Alexander
    JOURNAL OF THEORETICAL PROBABILITY, 2015, 28 (02) : 681 - 720
  • [48] Transition Density Estimates for a Class of Lévy and Lévy-Type Processes
    Viktorya Knopova
    René L. Schilling
    Journal of Theoretical Probability, 2012, 25 : 144 - 170
  • [49] Risk bounds of learning processes for Lévy processes
    Zhang, C. (ZHANGCHAO1015@GMAIL.COM), 1600, Microtome Publishing (14):