Occupation Times of Refracted Lévy Processes

被引:0
|
作者
A. E. Kyprianou
J. C. Pardo
J. L. Pérez
机构
[1] University of Bath,Department of Mathematical Sciences
[2] Centro de Investigación en Matemáticas,Department of Statistics
[3] ITAM,undefined
来源
关键词
Occupation times; Fluctuation theory; Refracted Lévy processes; 60G51;
D O I
暂无
中图分类号
学科分类号
摘要
A refracted Lévy process is a Lévy process whose dynamics change by subtracting off a fixed linear drift (of suitable size) whenever the aggregate process is above a pre-specified level. More precisely, whenever it exists, a refracted Lévy process is described by the unique strong solution to the stochastic differential equation dUt=−δ1{Ut>b}dt+dXt,t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathrm{d}}U_t=-\delta \mathbf 1 _{\{U_t>b\}}{\mathrm{d}}t +{\mathrm{d}}X_t,\quad t\ge 0 \end{aligned}$$\end{document}where X=(Xt,t≥0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=(X_t, t\ge 0)$$\end{document} is a Lévy process with law P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{P }$$\end{document} and b,δ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b,\delta \in \mathbb{R }$$\end{document} such that the resulting process U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U$$\end{document} may visit the half line (b,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(b,\infty )$$\end{document} with positive probability. In this paper, we consider the case that X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} is spectrally negative and establish a number of identities for the following functionals ∫0∞1{Ut<b}dt,∫0κc+1{Ut<b}dt,∫0κa−1{Ut<b}dt,∫0κc+∧κa−1{Ut<b}dt,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int \limits _0^\infty \mathbf 1 _{\{U_t<b\}}{\mathrm{d}}t, \quad \int \limits _0^{\kappa _c^+}\mathbf 1 _{\{U_t<b\}}{\mathrm{d}}t, \quad \int \limits _0^{\kappa ^-_a}\mathbf 1 _{\{U_t<b\}}{\mathrm{d}}t, \quad \int \limits _0^{\kappa _c^+\wedge \kappa ^-_a}\mathbf 1 _{\{U_t<b\}}{\mathrm{d}}t, \end{aligned}$$\end{document}where κc+=inf{t≥0:Ut>c}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa ^+_c=\inf \{t\ge 0: U_t> c\}$$\end{document} and κa−=inf{t≥0:Ut<a}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa ^-_a=\inf \{t\ge 0: U_t< a\}$$\end{document} for a<b<c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a<b<c$$\end{document}. Our identities extend recent results of Landriault et al. (Stoch Process Appl 121:2629–2641, 2011) and bear relevance to Parisian-type financial instruments and insurance scenarios.
引用
收藏
页码:1292 / 1315
页数:23
相关论文
共 50 条
  • [31] OCCUPATION TIMES AND OTHER ACCUMULATION PROCESSES
    HOROWITZ, J
    ADVANCES IN APPLIED PROBABILITY, 1977, 9 (02) : 196 - 197
  • [32] Precise Asymptotics for Lévy Processes
    Zhi Shui Hu
    Chun Su
    Acta Mathematica Sinica, English Series, 2007, 23 : 1265 - 1270
  • [33] Numerical methods for L,vy processes
    Hilber, N.
    Reich, N.
    Schwab, C.
    Winter, C.
    FINANCE AND STOCHASTICS, 2009, 13 (04) : 471 - 500
  • [34] OCCUPATION TIMES FOR SMOOTH STATIONARY PROCESSES
    GEMAN, D
    HOROWITZ, J
    ANNALS OF PROBABILITY, 1973, 1 (01): : 131 - 137
  • [35] Singularity sets of L,vy processes
    Durand, Arnaud
    PROBABILITY THEORY AND RELATED FIELDS, 2009, 143 (3-4) : 517 - 544
  • [36] On Approximation of Some Lévy Processes
    Taras, Dmytro Ivanenko
    Knopova, Victoria
    Platonov, Denis
    AUSTRIAN JOURNAL OF STATISTICS, 2024,
  • [37] Numerical methods for Lévy processes
    N. Hilber
    N. Reich
    C. Schwab
    C. Winter
    Finance and Stochastics, 2009, 13
  • [38] Perpetual Integrals for L,vy Processes
    Doring, Leif
    Kyprianou, Andreas E.
    JOURNAL OF THEORETICAL PROBABILITY, 2016, 29 (03) : 1192 - 1198
  • [39] Perpetual Integrals for Lévy Processes
    Leif Döring
    Andreas E. Kyprianou
    Journal of Theoretical Probability, 2016, 29 : 1192 - 1198
  • [40] Kato Classes for Lévy Processes
    Tomasz Grzywny
    Karol Szczypkowski
    Potential Analysis, 2017, 47 : 245 - 276