Occupation Times of Refracted Lévy Processes

被引:0
|
作者
A. E. Kyprianou
J. C. Pardo
J. L. Pérez
机构
[1] University of Bath,Department of Mathematical Sciences
[2] Centro de Investigación en Matemáticas,Department of Statistics
[3] ITAM,undefined
来源
关键词
Occupation times; Fluctuation theory; Refracted Lévy processes; 60G51;
D O I
暂无
中图分类号
学科分类号
摘要
A refracted Lévy process is a Lévy process whose dynamics change by subtracting off a fixed linear drift (of suitable size) whenever the aggregate process is above a pre-specified level. More precisely, whenever it exists, a refracted Lévy process is described by the unique strong solution to the stochastic differential equation dUt=−δ1{Ut>b}dt+dXt,t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathrm{d}}U_t=-\delta \mathbf 1 _{\{U_t>b\}}{\mathrm{d}}t +{\mathrm{d}}X_t,\quad t\ge 0 \end{aligned}$$\end{document}where X=(Xt,t≥0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=(X_t, t\ge 0)$$\end{document} is a Lévy process with law P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{P }$$\end{document} and b,δ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b,\delta \in \mathbb{R }$$\end{document} such that the resulting process U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U$$\end{document} may visit the half line (b,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(b,\infty )$$\end{document} with positive probability. In this paper, we consider the case that X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} is spectrally negative and establish a number of identities for the following functionals ∫0∞1{Ut<b}dt,∫0κc+1{Ut<b}dt,∫0κa−1{Ut<b}dt,∫0κc+∧κa−1{Ut<b}dt,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int \limits _0^\infty \mathbf 1 _{\{U_t<b\}}{\mathrm{d}}t, \quad \int \limits _0^{\kappa _c^+}\mathbf 1 _{\{U_t<b\}}{\mathrm{d}}t, \quad \int \limits _0^{\kappa ^-_a}\mathbf 1 _{\{U_t<b\}}{\mathrm{d}}t, \quad \int \limits _0^{\kappa _c^+\wedge \kappa ^-_a}\mathbf 1 _{\{U_t<b\}}{\mathrm{d}}t, \end{aligned}$$\end{document}where κc+=inf{t≥0:Ut>c}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa ^+_c=\inf \{t\ge 0: U_t> c\}$$\end{document} and κa−=inf{t≥0:Ut<a}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa ^-_a=\inf \{t\ge 0: U_t< a\}$$\end{document} for a<b<c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a<b<c$$\end{document}. Our identities extend recent results of Landriault et al. (Stoch Process Appl 121:2629–2641, 2011) and bear relevance to Parisian-type financial instruments and insurance scenarios.
引用
收藏
页码:1292 / 1315
页数:23
相关论文
共 50 条
  • [1] Poissonian occupation times of refracted Lévy processes with applications
    Liu, Zaiming
    Yang, Xiaofeng
    Dong, Hua
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (21) : 7659 - 7677
  • [2] Occupation Times of General L,vy Processes
    Wu, Lan
    Zhou, Jiang
    Yu, Shuang
    JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (04) : 1565 - 1604
  • [3] Occupation Times of General Lévy Processes
    Lan Wu
    Jiang Zhou
    Shuang Yu
    Journal of Theoretical Probability, 2017, 30 : 1565 - 1604
  • [4] Occupation Times of Refracted Levy Processes
    Kyprianou, A. E.
    Pardo, J. C.
    Perez, J. L.
    JOURNAL OF THEORETICAL PROBABILITY, 2014, 27 (04) : 1292 - 1315
  • [5] General Draw-Down Times for Refracted Spectrally Negative Lévy Processes
    Xuan Huang
    Jieming Zhou
    Methodology and Computing in Applied Probability, 2022, 24 : 875 - 891
  • [6] Occupation Times of Intervals Until Last Passage Times for Spectrally Negative Lévy Processes
    Chunhao Cai
    Bo Li
    Journal of Theoretical Probability, 2018, 31 : 2194 - 2215
  • [7] On weighted occupation times for refracted spectrally negative Levy processes
    Li, Bo
    Zhou, Xiaowen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) : 215 - 237
  • [8] Occupation times of refracted double exponential jump diffusion processes
    Zhou, Jiang
    Wu, Lan
    STATISTICS & PROBABILITY LETTERS, 2015, 106 : 218 - 227
  • [9] On a Family of Critical Growth-Fragmentation Semigroups and Refracted Lévy Processes
    Benedetta Cavalli
    Acta Applicandae Mathematicae, 2020, 166 : 161 - 186
  • [10] Joint occupation times in an infinite interval for spectrally negative Lévy processes on the last exit time
    Yingqiu Li
    Yushao Wei
    Yangli Hu
    Lithuanian Mathematical Journal, 2023, 63 : 367 - 381