Pathwise uniqueness for perturbed versions of Brownian motion and reflected Brownian motion

被引:0
|
作者
L. Chaumont
R. A. Doney
机构
[1] Laboratoire de Probabilités,
[2] Tour 56,undefined
[3] Université Pierre et Marie Curie,undefined
[4] 4,undefined
[5] Place Jussieu,undefined
[6] F-75252 Paris Cedex 05,undefined
[7] France,undefined
[8] Department of Mathematics,undefined
[9] University of Manchester,undefined
[10] Oxford Road,undefined
[11] Manchester M13 9PL,undefined
[12] UK e-mail: rad@fs2.ma.man.ac.uk,undefined
来源
关键词
Mathematics Subject Classification (1991): 60J30, 60J20;
D O I
暂无
中图分类号
学科分类号
摘要
Any solution of the functional equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}
引用
收藏
页码:519 / 534
页数:15
相关论文
共 50 条
  • [31] REFLECTED BROWNIAN-MOTION IN A POLYHEDRAL REGION
    WILLIAMS, RJ
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1985, 19 (01) : 10 - 11
  • [32] Set estimation from reflected Brownian motion
    Cholaquidis, Alejandro
    Fraiman, Ricardo
    Lugosi, Gabor
    Pateiro-Lopez, Beatriz
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (05) : 1057 - 1078
  • [33] Arbitrage problems with reflected geometric Brownian motion
    Dean Buckner
    Kevin Dowd
    Hardy Hulley
    [J]. Finance and Stochastics, 2024, 28 : 1 - 26
  • [34] REFLECTED BROWNIAN MOTION ON SIMPLE NESTED FRACTALS
    Kaleta, Kamil
    Olszewski, Mariusz
    Pietruska-Paluba, Katarzyna
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (06)
  • [35] The Hitting Time Density for a Reflected Brownian Motion
    Hu, Qin
    Wang, Yongjin
    Yang, Xuewei
    [J]. COMPUTATIONAL ECONOMICS, 2012, 40 (01) : 1 - 18
  • [36] On the infimum attained by the reflected fractional Brownian motion
    Debicki, K.
    Kosinski, K. M.
    [J]. EXTREMES, 2014, 17 (03) : 431 - 446
  • [37] The Hitting Time Density for a Reflected Brownian Motion
    Qin Hu
    Yongjin Wang
    Xuewei Yang
    [J]. Computational Economics, 2012, 40 : 1 - 18
  • [38] Reflected Brownian motion: selection, approximation and linearization
    Arnaudon, Marc
    Li, Xue-Mei
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
  • [39] Random variables as pathwise integrals with respect to fractional Brownian motion
    Mishura, Yuliya
    Shevchenko, Georgiy
    Valkeila, Esko
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (06) : 2353 - 2369
  • [40] Some calculations for doubly perturbed Brownian motion
    Chaumont, L
    Doney, RA
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 85 (01) : 61 - 74