On the infimum attained by the reflected fractional Brownian motion

被引:28
|
作者
Debicki, K. [1 ]
Kosinski, K. M. [2 ]
机构
[1] Univ Wroclaw, Math Inst, PL-50384 Wroclaw, Poland
[2] Univ Warsaw, Inst Math, PL-02097 Warsaw, Poland
关键词
Extremes of Gaussian fields; Storage processes; Fractional Brownian motion; STATIONARY GAUSSIAN-PROCESSES; RUIN PROBABILITY; STORAGE MODEL; EXTREMES; INPUT;
D O I
10.1007/s10687-014-0188-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {B-H (sic) : t >= 0 lozenge be a fractional Brownian motion with Hurst parameter H is an element of(1/2(c) 1). For the storage process Q(BH) (sic) = sup-infinity <= s <= t (sic)(H) (sic) B-H (sic) c (sic) s (sic) we show that, for any T (sic) > 0 such that T (sic) = O (u(2H-1/H)), P (inf(s is an element of(sic)cT(sic)) Q(BH) (sic) u) similar to P (Q(BH) (sic) u)(c) as u -> infinity This finding, known in the literature as the strong Piterbarg property, goes in line with previously observed properties of storage processes with self-similar and infinitely divisible input without Gaussian component.
引用
收藏
页码:431 / 446
页数:16
相关论文
共 50 条
  • [1] On the infimum attained by the reflected fractional Brownian motion
    K. Dębicki
    K. M. Kosiński
    [J]. Extremes, 2014, 17 : 431 - 446
  • [2] On the infimum attained by a reflected L,vy process
    Debicki, K.
    Kosinski, K. M.
    Mandjes, M.
    [J]. QUEUEING SYSTEMS, 2012, 70 (01) : 23 - 35
  • [3] On the infimum attained by a reflected Lévy process
    K. Dębicki
    K. M. Kosiński
    M. Mandjes
    [J]. Queueing Systems, 2012, 70 : 23 - 35
  • [4] Approximations for reflected fractional Brownian motion
    Malsagov, Artagan
    Mandjes, Michel
    [J]. PHYSICAL REVIEW E, 2019, 100 (03)
  • [5] DISCRETIZATION ERROR OF REFLECTED FRACTIONAL BROWNIAN MOTION
    McGlaughlin, Peter
    Chronopoulou, Alexandra
    [J]. 2016 WINTER SIMULATION CONFERENCE (WSC), 2016, : 270 - 276
  • [6] Reflected fractional Brownian motion in one and higher dimensions
    Vojta, Thomas
    Halladay, Samuel
    Skinner, Sarah
    Janusonis, Skirmantas
    Guggenberger, Tobias
    Metzler, Ralf
    [J]. PHYSICAL REVIEW E, 2020, 102 (03)
  • [7] On the supremum of γ-reflected processes with fractional Brownian motion as input
    Hashorva, Enkelejd
    Ji, Lanpeng
    Piterbarg, Vladimir I.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (11) : 4111 - 4127
  • [8] Brownian motion reflected on Brownian motion
    Krzysztof Burdzy
    David Nualart
    [J]. Probability Theory and Related Fields, 2002, 122 : 471 - 493
  • [9] Brownian motion reflected on Brownian motion
    Burdzy, K
    Nualart, D
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (04) : 471 - 493
  • [10] Non-Gaussian behavior of reflected fractional Brownian motion
    Wada, Alexander H. O.
    Warhover, Alex
    Vojta, Thomas
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,