On the infimum attained by the reflected fractional Brownian motion

被引:28
|
作者
Debicki, K. [1 ]
Kosinski, K. M. [2 ]
机构
[1] Univ Wroclaw, Math Inst, PL-50384 Wroclaw, Poland
[2] Univ Warsaw, Inst Math, PL-02097 Warsaw, Poland
关键词
Extremes of Gaussian fields; Storage processes; Fractional Brownian motion; STATIONARY GAUSSIAN-PROCESSES; RUIN PROBABILITY; STORAGE MODEL; EXTREMES; INPUT;
D O I
10.1007/s10687-014-0188-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {B-H (sic) : t >= 0 lozenge be a fractional Brownian motion with Hurst parameter H is an element of(1/2(c) 1). For the storage process Q(BH) (sic) = sup-infinity <= s <= t (sic)(H) (sic) B-H (sic) c (sic) s (sic) we show that, for any T (sic) > 0 such that T (sic) = O (u(2H-1/H)), P (inf(s is an element of(sic)cT(sic)) Q(BH) (sic) u) similar to P (Q(BH) (sic) u)(c) as u -> infinity This finding, known in the literature as the strong Piterbarg property, goes in line with previously observed properties of storage processes with self-similar and infinitely divisible input without Gaussian component.
引用
收藏
页码:431 / 446
页数:16
相关论文
共 50 条
  • [31] Tempered fractional Brownian motion
    Meerschaert, Mark M.
    Sabzikar, Farzad
    [J]. STATISTICS & PROBABILITY LETTERS, 2013, 83 (10) : 2269 - 2275
  • [32] Oscillatory Fractional Brownian Motion
    T. Bojdecki
    L. G. Gorostiza
    A. Talarczyk
    [J]. Acta Applicandae Mathematicae, 2013, 127 : 193 - 215
  • [33] On the prediction of fractional Brownian motion
    Gripenberg, G
    Norros, I
    [J]. JOURNAL OF APPLIED PROBABILITY, 1996, 33 (02) : 400 - 410
  • [34] Deconvolution of fractional Brownian motion
    Pipiras, V
    Taqqu, MS
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2002, 23 (04) : 487 - 501
  • [35] The multiparameter fractional Brownian motion
    Herbin, Erick
    Merzbach, Ely
    [J]. MATH EVERYWHERE: DETERMINISTIC AND STOCHASTIC MODELLING IN BIOMEDICINE, ECONOMICS AND INDUSTRY, 2007, : 93 - +
  • [36] Mixed fractional Brownian motion
    Cheridito, P
    [J]. BERNOULLI, 2001, 7 (06) : 913 - 934
  • [37] On Fractional Brownian Motion and Wavelets
    S. Albeverio
    P. E. T. Jorgensen
    A. M. Paolucci
    [J]. Complex Analysis and Operator Theory, 2012, 6 : 33 - 63
  • [38] On Fractional Brownian Motion and Wavelets
    Albeverio, S.
    Jorgensen, P. E. T.
    Paolucci, A. M.
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (01) : 33 - 63
  • [39] Piecewise fractional Brownian motion
    Perrin, E
    Harba, R
    Iribarren, I
    Jennane, R
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (03) : 1211 - 1215
  • [40] Fractal (fractional) Brownian motion
    Chow, Winston C.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2011, 3 (02): : 149 - 162