Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications

被引:0
|
作者
Bruno Casella
Gareth O. Roberts
机构
[1] University of Warwick,Department of Statistics
关键词
Jump diffusion; Simulation; Exact Algorithms; Barrier option pricing; Primary 60K30; Secondary 65C05;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a novel algorithm (JEA) to simulate exactly from a class of one-dimensional jump-diffusion processes with state-dependent intensity. The simulation of the continuous component builds on the recent Exact Algorithm (Beskos et al., Bernoulli 12(6):1077–1098, 2006a). The simulation of the jump component instead employs a thinning algorithm with stochastic acceptance probabilities in the spirit of Glasserman and Merener (Proc R Soc Lond Ser A Math Phys Eng Sci 460(2041):111–127, 2004). In turn JEA allows unbiased Monte Carlo simulation of a wide class of functionals of the process’ trajectory, including discrete averages, max/min, crossing events, hitting times. Our numerical experiments show that the method outperforms Monte Carlo methods based on the Euler discretization.
引用
收藏
页码:449 / 473
页数:24
相关论文
共 50 条
  • [41] ON THE EXACT SIMULATION OF (JUMP) DIFFUSION BRIDGES
    Pollock, Murray
    2015 WINTER SIMULATION CONFERENCE (WSC), 2015, : 348 - 359
  • [42] Diffusion Kurtosis Imaging: Monte Carlo simulation of diffusion Processes using Crowdprocess
    Sousa, David Naves
    Ferreira, Hugo Alexandre
    2015 IEEE 4TH PORTUGUESE MEETING ON BIOENGINEERING (ENBENG), 2015,
  • [43] Monte Carlo simulation of diffusion and reaction in water radiolysis – a study of reactant `jump through' and jump distances
    R. N. Hamm
    J. E. Turner
    M. G. Stabin
    Radiation and Environmental Biophysics, 1998, 36 : 229 - 234
  • [44] Monte Carlo simulation of diffusion and reaction in water radiolysis - a study of reactant 'jump through' and jump distances
    Hamm, RN
    Turner, JE
    Stabin, MG
    RADIATION AND ENVIRONMENTAL BIOPHYSICS, 1998, 36 (04) : 229 - 234
  • [45] Efficient Monte Carlo Barrier Option Pricing When the Underlying Security Price Follows a Jump-Diffusion Process
    Ross, Sheldon M.
    Ghamami, Samim
    JOURNAL OF DERIVATIVES, 2010, 17 (03): : 45 - 52
  • [46] Approximating GARCH-jump models, jump-diffusion processes, and option pricing
    Duan, JC
    Ritchken, P
    Sun, ZQ
    MATHEMATICAL FINANCE, 2006, 16 (01) : 21 - 52
  • [47] Monte Carlo simulation of markovian jump system
    He, Zhen
    Wang, Yi
    Meng, Fan-Wei
    Shao, Ming
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2008, 12 (01): : 80 - 83
  • [48] Exact and approximated option pricing in a stochastic volatility jump-diffusion model
    D'Ippoliti, Fernanda
    Moretto, Enrico
    Pasquali, Sara
    Trivellato, Barbara
    MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, 2010, : 133 - +
  • [49] Exact solutions and doubly efficient approximations of jump-diffusion Ito equations
    Maghsoodi, Y
    STOCHASTIC ANALYSIS AND APPLICATIONS, 1998, 16 (06) : 1049 - 1072
  • [50] Monte Carlo Simulation of Diffusion Processes in Three-Component Alloys
    A. R. Khalikov
    E. A. Sharapov
    E. A. Korznikova
    A. I. Potekaev
    M. D. Starostenkov
    E. V. Galieva
    S. V. Dmitriev
    Russian Physics Journal, 2019, 62 : 691 - 697