Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications

被引:0
|
作者
Bruno Casella
Gareth O. Roberts
机构
[1] University of Warwick,Department of Statistics
关键词
Jump diffusion; Simulation; Exact Algorithms; Barrier option pricing; Primary 60K30; Secondary 65C05;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a novel algorithm (JEA) to simulate exactly from a class of one-dimensional jump-diffusion processes with state-dependent intensity. The simulation of the continuous component builds on the recent Exact Algorithm (Beskos et al., Bernoulli 12(6):1077–1098, 2006a). The simulation of the jump component instead employs a thinning algorithm with stochastic acceptance probabilities in the spirit of Glasserman and Merener (Proc R Soc Lond Ser A Math Phys Eng Sci 460(2041):111–127, 2004). In turn JEA allows unbiased Monte Carlo simulation of a wide class of functionals of the process’ trajectory, including discrete averages, max/min, crossing events, hitting times. Our numerical experiments show that the method outperforms Monte Carlo methods based on the Euler discretization.
引用
收藏
页码:449 / 473
页数:24
相关论文
共 50 条
  • [21] Online drift estimation for jump-diffusion processes
    Bhudisaksang, Theerawat
    Cartea, Alvaro
    BERNOULLI, 2021, 27 (04) : 2494 - 2518
  • [22] Wasserstein distance estimates for jump-diffusion processes
    Breton, Jean-Christophe
    Privault, Nicolas
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 172
  • [23] Dynamic asset allocation with jump-diffusion processes
    Zheng, Yingchun
    Zhang, Shougang
    Yang, Yunfeng
    2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 442 - 446
  • [24] Jump-diffusion processes as models for neuronal activity
    Giraudo, MT
    Sacerdote, L
    BIOSYSTEMS, 1997, 40 (1-2) : 75 - 82
  • [25] A Monte-Carlo option-pricing algorithm for log-uniform jump-diffusion model
    Zhu, Zongwu
    Hanson, Floyd B.
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 5221 - 5226
  • [26] Exact simulation of stochastic volatility and other affine jump diffusion processes
    Broadie, M
    Kaya, Ö
    OPERATIONS RESEARCH, 2006, 54 (02) : 217 - 231
  • [27] Jump locations of jump-diffusion processes with state-dependent rates
    Miles, Christopher E.
    Keener, James P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (42)
  • [28] Local M-estimation for jump-diffusion processes
    Wang, Yunyan
    Zhang, Lixin
    Tang, Mingtian
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (07) : 1273 - 1284
  • [29] Explicit Solution Processes for Nonlinear Jump-Diffusion Equations
    Gazanfer Ünal
    Hasret Turkeri
    Chaudry Masood Khalique
    Journal of Nonlinear Mathematical Physics, 2010, 17 : 281 - 292
  • [30] EXPLICIT SOLUTION PROCESSES FOR NONLINEAR JUMP-DIFFUSION EQUATIONS
    Uenal, Gazanfer
    Turkeri, Hasret
    Khalique, Chaudry Masood
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2010, 17 (03) : 281 - 310