Strong Convergence of Projected Subgradient Methods for Nonsmooth and Nonstrictly Convex Minimization

被引:12
|
作者
Paul-Emile Maingé
机构
[1] Université des Antilles-Guyane,Département Scientifique Interfacultaire, GRIMAAG
[2] Campus de Schoelcher,undefined
来源
Set-Valued Analysis | 2008年 / 16卷
关键词
Convex minimization; Projected gradient method; Nonsmooth optimization; Viscosity method; 90C25; 90C30; 65C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish a strong convergence theorem regarding a regularized variant of the projected subgradient method for nonsmooth, nonstrictly convex minimization in real Hilbert spaces. Only one projection step is needed per iteration and the involved stepsizes are controlled so that the algorithm is of practical interest. To this aim, we develop new techniques of analysis which can be adapted to many other non-Fejérian methods.
引用
收藏
页码:899 / 912
页数:13
相关论文
共 50 条
  • [31] AN AGGREGATE SUBGRADIENT METHOD FOR NONSMOOTH AND NONCONVEX MINIMIZATION
    KIWIEL, KC
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 14 (03) : 391 - 400
  • [32] On the global convergence of a nonmonotone proximal bundle method for convex nonsmooth minimization
    Hou, Liusheng
    Sun, Wenyu
    OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (02): : 227 - 235
  • [33] Primal convergence from dual subgradient methods for convex optimization
    Gustavsson, Emil
    Patriksson, Michael
    Stromberg, Ann-Brith
    MATHEMATICAL PROGRAMMING, 2015, 150 (02) : 365 - 390
  • [34] Subgradient ellipsoid method for nonsmooth convex problems
    Rodomanov, Anton
    Nesterov, Yurii
    MATHEMATICAL PROGRAMMING, 2023, 199 (1-2) : 305 - 341
  • [35] Subgradient ellipsoid method for nonsmooth convex problems
    Anton Rodomanov
    Yurii Nesterov
    Mathematical Programming, 2023, 199 : 305 - 341
  • [36] Primal convergence from dual subgradient methods for convex optimization
    Emil Gustavsson
    Michael Patriksson
    Ann-Brith Strömberg
    Mathematical Programming, 2015, 150 : 365 - 390
  • [37] On the Convergence Time of Dual Subgradient Methods for Strongly Convex Programs
    Yu, Hao
    Neely, Michael J.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (04) : 1105 - 1112
  • [38] Fixed and virtual stability center methods for convex nonsmooth minimization
    Fuduli, A
    NONLINEAR OPTIMIZATION AND RELATED TOPICS, 2000, 36 : 105 - 122
  • [39] Truncated Nonsmooth Newton Multigrid Methods for Convex Minimization Problems
    Graeser, Carsten
    Sack, Uli
    Sander, Oliver
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XVIII, 2009, 70 : 129 - 136
  • [40] Level control In projection methods for nonsmooth convex minimization problems
    Dylewski, Robert
    PRZEGLAD ELEKTROTECHNICZNY, 2010, 86 (09): : 141 - 144