Subgradient ellipsoid method for nonsmooth convex problems

被引:3
|
作者
Rodomanov, Anton [1 ]
Nesterov, Yurii [2 ]
机构
[1] Catholic Univ Louvain UCL, Inst Informat & Commun Technol Elect & Appl Math, Louvain La Neuve, Belgium
[2] Catholic Univ Louvain UCL, Ctr Operat Res & Econometr CORE, Louvain La Neuve, Belgium
基金
欧洲研究理事会;
关键词
Subgradient method; Ellipsoid method; Accuracy certificates; Separating oracle; Convex optimization; Nonsmooth optimization; Saddle-point problems; Variational inequalities; ALGORITHM;
D O I
10.1007/s10107-022-01833-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we present a new ellipsoid-type algorithm for solving nonsmooth problems with convex structure. Examples of such problems include nonsmooth convex minimization problems, convex-concave saddle-point problems and variational inequalities with monotone operator. Our algorithm can be seen as a combination of the standard Subgradient and Ellipsoid methods. However, in contrast to the latter one, the proposed method has a reasonable convergence rate even when the dimensionality of the problem is sufficiently large. For generating accuracy certificates in our algorithm, we propose an efficient technique, which ameliorates the previously known recipes (Nemirovski in Math Oper Res 35(1):52-78, 2010).
引用
收藏
页码:305 / 341
页数:37
相关论文
共 50 条
  • [1] Subgradient ellipsoid method for nonsmooth convex problems
    Anton Rodomanov
    Yurii Nesterov
    [J]. Mathematical Programming, 2023, 199 : 305 - 341
  • [2] A subgradient supported ellipsoid method for convex multiobjective optimization problems
    Muthukani, M.
    Paramanathan, P.
    [J]. OPSEARCH, 2024,
  • [3] Spectral projected subgradient method for nonsmooth convex optimization problems
    Krejic, Natasa
    Jerinkic, Natasa Krklec
    Ostojic, Tijana
    [J]. NUMERICAL ALGORITHMS, 2023, 93 (01) : 347 - 365
  • [4] Spectral projected subgradient method for nonsmooth convex optimization problems
    Nataša Krejić
    Nataša Krklec Jerinkić
    Tijana Ostojić
    [J]. Numerical Algorithms, 2023, 93 : 347 - 365
  • [5] AN AGGREGATE SUBGRADIENT METHOD FOR NONSMOOTH CONVEX MINIMIZATION
    KIWIEL, KC
    [J]. MATHEMATICAL PROGRAMMING, 1983, 27 (03) : 320 - 341
  • [6] On the projected subgradient method for nonsmooth convex optimization in a Hilbert space
    Ya. I. Alber
    A. N. Iusem
    M. V. Solodov
    [J]. Mathematical Programming, 1998, 81 : 23 - 35
  • [7] A delayed subgradient method for nonsmooth convex-concave min-max optimization problems
    Arunrat, Tipsuda
    Nimana, Nimit
    [J]. RESULTS IN CONTROL AND OPTIMIZATION, 2023, 12
  • [8] On the projected subgradient method for nonsmooth convex optimization in a Hilbert space
    Alber, YI
    Iusem, AN
    Solodov, MV
    [J]. MATHEMATICAL PROGRAMMING, 1998, 81 (01) : 23 - 35
  • [9] Subgradient-based neural networks for nonsmooth convex optimization problems
    Xue, Xiaoping
    Bian, Wei
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2008, 55 (08) : 2378 - 2391
  • [10] A method of centers with approximate subgradient linearizations for nonsmooth convex optimization
    Kiwiel, Krzysztof C.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (04) : 1467 - 1489