Subgradient ellipsoid method for nonsmooth convex problems

被引:3
|
作者
Rodomanov, Anton [1 ]
Nesterov, Yurii [2 ]
机构
[1] Catholic Univ Louvain UCL, Inst Informat & Commun Technol Elect & Appl Math, Louvain La Neuve, Belgium
[2] Catholic Univ Louvain UCL, Ctr Operat Res & Econometr CORE, Louvain La Neuve, Belgium
基金
欧洲研究理事会;
关键词
Subgradient method; Ellipsoid method; Accuracy certificates; Separating oracle; Convex optimization; Nonsmooth optimization; Saddle-point problems; Variational inequalities; ALGORITHM;
D O I
10.1007/s10107-022-01833-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we present a new ellipsoid-type algorithm for solving nonsmooth problems with convex structure. Examples of such problems include nonsmooth convex minimization problems, convex-concave saddle-point problems and variational inequalities with monotone operator. Our algorithm can be seen as a combination of the standard Subgradient and Ellipsoid methods. However, in contrast to the latter one, the proposed method has a reasonable convergence rate even when the dimensionality of the problem is sufficiently large. For generating accuracy certificates in our algorithm, we propose an efficient technique, which ameliorates the previously known recipes (Nemirovski in Math Oper Res 35(1):52-78, 2010).
引用
收藏
页码:305 / 341
页数:37
相关论文
共 50 条
  • [21] THE SUBGRADIENT MULTISTEP MINIMIZATION METHOD FOR NONSMOOTH HIGH-DIMENSIONAL PROBLEMS
    Krutikov, V. N.
    Vershinin, Ya. N.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2014, (29): : 5 - 19
  • [22] Subgradient Method for Nonconvex Nonsmooth Optimization
    Bagirov, A. M.
    Jin, L.
    Karmitsa, N.
    Al Nuaimat, A.
    Sultanova, N.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 157 (02) : 416 - 435
  • [23] Subgradient Method for Nonconvex Nonsmooth Optimization
    A. M. Bagirov
    L. Jin
    N. Karmitsa
    A. Al Nuaimat
    N. Sultanova
    Journal of Optimization Theory and Applications, 2013, 157 : 416 - 435
  • [24] STOCHASTIC SUBGRADIENT METHOD FOR QUASI-CONVEX OPTIMIZATION PROBLEMS
    Hu, Yaohua
    Yu, Carisa Kwok Wai
    Li, Chong
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (04) : 711 - 724
  • [25] Quasi-monotone Subgradient Methods for Nonsmooth Convex Minimization
    Nesterov, Yu.
    Shikhman, V.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 165 (03) : 917 - 940
  • [26] Quasi-monotone Subgradient Methods for Nonsmooth Convex Minimization
    Yu. Nesterov
    V. Shikhman
    Journal of Optimization Theory and Applications, 2015, 165 : 917 - 940
  • [27] An improved ellipsoid method for solving convex differentiable optimization problems
    Beck, Amir
    Sabach, Shoham
    OPERATIONS RESEARCH LETTERS, 2012, 40 (06) : 541 - 545
  • [28] Strong Convergence of Projected Subgradient Methods for Nonsmooth and Nonstrictly Convex Minimization
    Mainge, Paul-Emile
    SET-VALUED ANALYSIS, 2008, 16 (7-8): : 899 - 912
  • [29] A SUBGRADIENT METHOD BASED ON GRADIENT SAMPLING FOR SOLVING CONVEX OPTIMIZATION PROBLEMS
    Hu, Yaohua
    Sim, Chee-Khian
    Yang, Xiaoqi
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (12) : 1559 - 1584
  • [30] Primal-dual subgradient method for constrained convex optimization problems
    Metel, Michael R.
    Takeda, Akiko
    OPTIMIZATION LETTERS, 2021, 15 (04) : 1491 - 1504