Subgradient ellipsoid method for nonsmooth convex problems

被引:3
|
作者
Rodomanov, Anton [1 ]
Nesterov, Yurii [2 ]
机构
[1] Catholic Univ Louvain UCL, Inst Informat & Commun Technol Elect & Appl Math, Louvain La Neuve, Belgium
[2] Catholic Univ Louvain UCL, Ctr Operat Res & Econometr CORE, Louvain La Neuve, Belgium
基金
欧洲研究理事会;
关键词
Subgradient method; Ellipsoid method; Accuracy certificates; Separating oracle; Convex optimization; Nonsmooth optimization; Saddle-point problems; Variational inequalities; ALGORITHM;
D O I
10.1007/s10107-022-01833-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we present a new ellipsoid-type algorithm for solving nonsmooth problems with convex structure. Examples of such problems include nonsmooth convex minimization problems, convex-concave saddle-point problems and variational inequalities with monotone operator. Our algorithm can be seen as a combination of the standard Subgradient and Ellipsoid methods. However, in contrast to the latter one, the proposed method has a reasonable convergence rate even when the dimensionality of the problem is sufficiently large. For generating accuracy certificates in our algorithm, we propose an efficient technique, which ameliorates the previously known recipes (Nemirovski in Math Oper Res 35(1):52-78, 2010).
引用
收藏
页码:305 / 341
页数:37
相关论文
共 50 条
  • [31] Aggregate subgradient method for nonsmooth DC optimization
    Adil M. Bagirov
    Sona Taheri
    Kaisa Joki
    Napsu Karmitsa
    Marko M. Mäkelä
    Optimization Letters, 2021, 15 : 83 - 96
  • [32] NONDESCENT SUBGRADIENT METHOD FOR NONSMOOTH CONSTRAINED MINIMIZATION
    徐慧福
    Numerical Mathematics(Theory,Methods and Applications), 1994, (02) : 126 - 134
  • [33] Aggregate subgradient method for nonsmooth DC optimization
    Bagirov, Adil M.
    Taheri, Sona
    Joki, Kaisa
    Karmitsa, Napsu
    Makela, Marko M.
    OPTIMIZATION LETTERS, 2021, 15 (01) : 83 - 96
  • [34] AN AGGREGATE SUBGRADIENT METHOD FOR NONSMOOTH AND NONCONVEX MINIMIZATION
    KIWIEL, KC
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 14 (03) : 391 - 400
  • [35] Primal-dual subgradient method for constrained convex optimization problems
    Michael R. Metel
    Akiko Takeda
    Optimization Letters, 2021, 15 : 1491 - 1504
  • [36] Subgradient method with feasible inexact projections for constrained convex optimization problems
    Aguiar, A. A.
    Ferreira, O. P.
    Prudente, L. F.
    OPTIMIZATION, 2022, 71 (12) : 3515 - 3537
  • [37] Bundle Enrichment Method for Nonsmooth Difference of Convex Programming Problems
    Gaudioso, Manlio
    Taheri, Sona
    Bagirov, Adil M.
    Karmitsa, Napsu
    ALGORITHMS, 2023, 16 (08)
  • [38] On the proximal Landweber Newton method for a class of nonsmooth convex problems
    Zhang, Hai-Bin
    Jiang, Jiao-Jiao
    Zhao, Yun-Bin
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 61 (01) : 79 - 99
  • [39] On the proximal Landweber Newton method for a class of nonsmooth convex problems
    Hai-Bin Zhang
    Jiao-Jiao Jiang
    Yun-Bin Zhao
    Computational Optimization and Applications, 2015, 61 : 79 - 99
  • [40] A bundle method for a class of bilevel nonsmooth convex minimization problems
    Solodov, Mikhail V.
    SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (01) : 242 - 259