A machine learning-based risk stratification tool for in-hospital mortality of intensive care unit patients with heart failure

被引:0
|
作者
Cida Luo
Yi Zhu
Zhou Zhu
Ranxi Li
Guoqin Chen
Zhang Wang
机构
[1] South China Normal University-Panyu Central Hospital Joint Laboratory of Basic and Translational Medical Research,School of Life Sciences
[2] Guangzhou Panyu Central Hospital,Department of Cardiology
[3] South China Normal University,undefined
[4] Guangzhou Panyu Central Hospital,undefined
关键词
Machine learning models; Heart failure; Extreme gradient boosting; Medical information mart for intensive care; Risk stratification;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] A machine learning-based risk stratification tool for in-hospital mortality of intensive care unit patients with heart failure
    Luo, Cida
    Zhu, Yi
    Zhu, Zhou
    Li, Ranxi
    Chen, Guoqin
    Wang, Zhang
    [J]. JOURNAL OF TRANSLATIONAL MEDICINE, 2022, 20 (01)
  • [2] Machine learning-based in-hospital mortality risk prediction tool for intensive care unit patients with heart failure
    Chen, Zijun
    Li, Tingming
    Guo, Sheng
    Zeng, Deli
    Wang, Kai
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2023, 10
  • [3] Prediction model of in-hospital mortality in intensive care unit patients with heart failure: machine learning-based, retrospective analysis of the MIMIC-III database
    Li, Fuhai
    Xin, Hui
    Zhang, Jidong
    Fu, Mingqiang
    Zhou, Jingmin
    Lian, Zhexun
    [J]. BMJ OPEN, 2021, 11 (07):
  • [4] Derivation and validation of a machine learning-based risk prediction model for in-hospital mortality in patients with acute heart failure
    Misumi, K.
    Matsue, Y.
    Nogi, K.
    Kitai, T.
    Oishi, S.
    Suzuki, S.
    Yamamoto, M.
    Kida, T.
    Okumura, T.
    Nogi, M.
    Ishihara, S.
    Ueda, T.
    Kawakami, R.
    Saito, Y.
    Minamino, T.
    [J]. EUROPEAN HEART JOURNAL, 2022, 43 : 1083 - 1083
  • [5] Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit
    Huang, Tianzhi
    Le, Dejin
    Yuan, Lili
    Xu, Shoujia
    Peng, Xiulan
    [J]. PLOS ONE, 2023, 18 (01):
  • [6] Machine learning for the prediction of in-hospital mortality in patients with spontaneous intracerebral hemorrhage in intensive care unit
    Mao, Baojie
    Ling, Lichao
    Pan, Yuhang
    Zhang, Rui
    Zheng, Wanning
    Shen, Yanfei
    Lu, Wei
    Lu, Yuning
    Xu, Shanhu
    Wu, Jiong
    Wang, Ming
    Wan, Shu
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [7] Prediction of in-hospital Mortality of Intensive Care Unit Patients with Acute Pancreatitis Based on an Explainable Machine Learning Algorithm
    Ren, Wensen
    Zou, Kang
    Huang, Shu
    Xu, Huan
    Zhang, Wei
    Shi, Xiaomin
    Shi, Lei
    Zhong, Xiaolin
    Peng, Yan
    Tang, Xiaowei
    Lu, Muhan
    [J]. JOURNAL OF CLINICAL GASTROENTEROLOGY, 2024, 58 (06) : 619 - 626
  • [8] Risk stratification for in-hospital mortality in acutely decompensated heart failure
    Royston, P
    Altman, DG
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2005, 293 (20): : 2467 - 2468
  • [9] A Novel Composite Indicator of Predicting Mortality Risk for Heart Failure Patients With Diabetes Admitted to Intensive Care Unit Based on Machine Learning
    Yang, Boshen
    Zhu, Yuankang
    Lu, Xia
    Shen, Chengxing
    [J]. FRONTIERS IN ENDOCRINOLOGY, 2022, 13
  • [10] Risk Stratification for Hospital Readmission of Heart Failure Patients: A Machine Learning Approach
    Hon, Chun Pan
    Pereira, Mayana
    Sushmita, Shanu
    Teredesai, Ankur
    De Cock, Martine
    [J]. PROCEEDINGS OF THE 7TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2016, : 491 - 492