Risk Stratification for Hospital Readmission of Heart Failure Patients: A Machine Learning Approach

被引:5
|
作者
Hon, Chun Pan [1 ]
Pereira, Mayana [1 ]
Sushmita, Shanu [1 ]
Teredesai, Ankur [1 ]
De Cock, Martine [1 ]
机构
[1] Univ Washington, Inst Technol, Ctr Data Sci, Tacoma, WA 98402 USA
关键词
D O I
10.1145/2975167.2985648
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Being able to stratify patients according to 30-day hospital readmission risk, anticipated length and cost of stay can guide clinicians in discharge planning and intervention recommendation, leading to an increase of quality of care, and a decrease of healthcare cost. We present a comparative performance analysis of decision trees, boosted decision trees and logistic regression models that can flag, at the time of discharge, patients with an anticipated early, lengthy and expensive readmission. We validate our models using discharge records of 500K congestive heart failure patients from California-licensed hospitals.
引用
下载
收藏
页码:491 / 492
页数:2
相关论文
共 50 条
  • [1] A Machine Learning Approach to Acute Heart Failure Risk Stratification
    Ghandian, Sina
    Mataraso, Samson
    Pellegrini, Emily
    Lynn-Palevsky, Anna
    Barnes, Gina
    Saxena, Abigail Green
    Hoffman, Jana
    Calvert, Jacob
    Das, Ritankar
    CIRCULATION, 2020, 142
  • [2] Predicting the Risk of Severity and Readmission in Patients with Heart Failure in Indonesia:A Machine Learning Approach
    Indriany, Finna E.
    Siregar, Kemal N.
    Purwowiyoto, Budhi Setianto
    Siswanto, Bambang Budi
    Sutedja, Indrajani
    Wijaya, Hendy R.
    HEALTHCARE INFORMATICS RESEARCH, 2024, 30 (03) : 253 - 265
  • [3] Comparing Machine Learning Classifiers for Predicting Hospital Readmission of Heart Failure Patients in Rwanda
    Rizinde, Theogene
    Ngaruye, Innocent
    Cahill, Nathan D.
    JOURNAL OF PERSONALIZED MEDICINE, 2023, 13 (09):
  • [4] Machine Learning Enhanced Predictions of Hospital Readmission or Death in Heart Failure
    Su, Zhaohui
    Brecht, Tom
    O'Donovan, Francis
    Boussios, Costas
    Menon, Vandana
    Gliklich, Rich
    Fonarow, Gregg
    CIRCULATION, 2017, 136
  • [5] Predicting Hospital Readmission in Heart Failure Patients in Iran: A Comparison of Various Machine Learning Methods
    Najafi-Vosough, Roya
    Faradmal, Javad
    Hosseini, Seyed Kianoosh
    Moghimbeigi, Abbas
    Mahjub, Hossein
    HEALTHCARE INFORMATICS RESEARCH, 2021, 27 (04) : 307 - 314
  • [6] MULTIMODAL LEARNING ENABLES ACCURATE PREDICTION OF HOSPITAL READMISSION AND MORTALITY RISK FOR HEART FAILURE PATIENTS
    Wang, Weiting
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (13) : 796 - 796
  • [7] Validation of Readmission Risk Score and Readmission Rate in Heart Failure Patients at a Quaternary Hospital
    Sudhakar, Selvin
    Barbagelata, Alejandro N.
    Elsaid, Saleh
    Mahajan, Manju
    Sunkara, Anusha
    Nannapanneni, Nischala
    Zhang, Wei
    Garikipatti, Sireesha
    Cena, Marek
    Javed, Sara
    Qureshi, Hammad
    Sharma, Gulshan
    CIRCULATION, 2013, 128 (22)
  • [8] Machine learning based readmission and mortality prediction in heart failure patients
    Maziar Sabouri
    Ahmad Bitarafan Rajabi
    Ghasem Hajianfar
    Omid Gharibi
    Mobin Mohebi
    Atlas Haddadi Avval
    Nasim Naderi
    Isaac Shiri
    Scientific Reports, 13
  • [9] Machine learning based readmission and mortality prediction in heart failure patients
    Sabouri, Maziar
    Rajabi, Ahmad Bitarafan
    Hajianfar, Ghasem
    Gharibi, Omid
    Mohebi, Mobin
    Avval, Atlas Haddadi
    Naderi, Nasim
    Shiri, Isaac
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [10] A streamlined, machine learning-derived approach to risk-stratification in heart failure patients with secondary tricuspid regurgitation
    Heitzinger, G.
    Spinka, G.
    Koschatko, S.
    Dannenberg, V.
    Halavina, K.
    Mascherbauer, K.
    Winter, M. P.
    Strunk, G.
    Pavo, N.
    Kastl, S.
    Huelsmann, M.
    Rosenhek, R.
    Hengstenberg, C.
    Bartko, P. E.
    Goliasch, G.
    EUROPEAN HEART JOURNAL, 2022, 43 : 1654 - 1654