Risk Stratification for Hospital Readmission of Heart Failure Patients: A Machine Learning Approach

被引:5
|
作者
Hon, Chun Pan [1 ]
Pereira, Mayana [1 ]
Sushmita, Shanu [1 ]
Teredesai, Ankur [1 ]
De Cock, Martine [1 ]
机构
[1] Univ Washington, Inst Technol, Ctr Data Sci, Tacoma, WA 98402 USA
关键词
D O I
10.1145/2975167.2985648
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Being able to stratify patients according to 30-day hospital readmission risk, anticipated length and cost of stay can guide clinicians in discharge planning and intervention recommendation, leading to an increase of quality of care, and a decrease of healthcare cost. We present a comparative performance analysis of decision trees, boosted decision trees and logistic regression models that can flag, at the time of discharge, patients with an anticipated early, lengthy and expensive readmission. We validate our models using discharge records of 500K congestive heart failure patients from California-licensed hospitals.
引用
收藏
页码:491 / 492
页数:2
相关论文
共 50 条
  • [31] Comparison of Hospital Performance on Readmission and Mortality for Heart Failure Patients
    Keenan, Patricia S.
    Chen, Jersey
    Ross, Joseph S.
    Drye, Elizabeth
    Lin, Zhenqiu
    Wang, Yun
    Normand, Sharon-Lise T.
    Krumholz, Harlan M.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2009, 53 (10) : A396 - A396
  • [32] GROUPING OF PATIENTS ON RELATION TO HOSPITAL READMISSION BY ACUTE HEART FAILURE
    Quintana, J. M.
    Anton-Ladislao, A.
    Garcia-Gutierrez, S.
    Lafuente, I.
    Morillas, M. J.
    Hernandez, E.
    Rilo, I.
    Murga, N.
    Quiros, R.
    CARDIOLOGY, 2016, 134 : 64 - 64
  • [33] Length of hospital stay and readmission rates in heart failure patients
    Watkins, S.
    Young, C.
    McCandless, E. A.
    Dargie, H. J.
    EUROPEAN HEART JOURNAL, 2005, 26 : 281 - 282
  • [34] VARIABLES ASSOCIATED WITH HOSPITAL READMISSION OF PATIENTS WITH CONGESTIVE HEART FAILURE
    Yusufzai, M.
    Singh, N.
    Sirohi, R.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2011, 59 (01) : 112 - 113
  • [35] Explainable machine learning for predicting 30-day readmission in acute heart failure patients
    Zhang, Yang
    Xiang, Tianyu
    Wang, Yanqing
    Shu, Tingting
    Yin, Chengliang
    Li, Huan
    Duan, Minjie
    Sun, Mengyan
    Zhao, Binyi
    Kadier, Kaisaierjiang
    Xu, Qian
    Ling, Tao
    Kong, Fanqi
    Liu, Xiaozhu
    ISCIENCE, 2024, 27 (07)
  • [36] Multimarker approach to risk stratification among patients with advanced chronic heart failure
    Yin, Wei-Hsian
    Chen, Jaw-Wen
    Feng, An-Ning
    Lin, Shing-Jong
    Young, Shing
    CLINICAL CARDIOLOGY, 2007, 30 (08) : 397 - 402
  • [37] Preventing hospital readmission for heart failure
    Zolot, JS
    AMERICAN JOURNAL OF NURSING, 2003, 103 (05) : 20 - 20
  • [38] Determining 30-day readmission risk for heart failure patients: the Readmission After Heart Failure scale
    Chamberlain, Ronald S.
    Sond, Jaswinder
    Mahendraraj, Krishnaraj
    Lau, Christine S. M.
    Siracuse, Brianna L.
    INTERNATIONAL JOURNAL OF GENERAL MEDICINE, 2018, 11 : 127 - 141
  • [39] MRI radiomics: A machine learning approach for the risk stratification of endometrial cancer patients
    Mainenti, Pier Paolo
    Stanzione, Arnaldo
    Cuocolo, Renato
    Del Grosso, Renata
    Danzi, Roberta
    Romeo, Valeria
    Raffone, Antonio
    Sardo, Attilio Di Spiezio
    Giordano, Elena
    Travaglino, Antonio
    Insabato, Luigi
    Scaglione, Mariano
    Maurea, Simone
    Brunetti, Arturo
    EUROPEAN JOURNAL OF RADIOLOGY, 2022, 149
  • [40] Patients with cardiac amyloidosis are at a greater risk of mortality and hospital readmission after acute heart failure
    Berthelot, Emmanuelle
    Broussier, Amaury
    Hittinger, Luc
    Donadio, Cristiano
    Rovani, Xavier
    Salengro, Emmanuel
    Megbemado, Richard
    Godreuil, Christian
    Belmin, Joel
    David, Jean Philippe
    Genet, Bastien
    Damy, Thibaud
    ESC HEART FAILURE, 2023, 10 (03): : 2042 - 2050