Risk Stratification for Hospital Readmission of Heart Failure Patients: A Machine Learning Approach

被引:5
|
作者
Hon, Chun Pan [1 ]
Pereira, Mayana [1 ]
Sushmita, Shanu [1 ]
Teredesai, Ankur [1 ]
De Cock, Martine [1 ]
机构
[1] Univ Washington, Inst Technol, Ctr Data Sci, Tacoma, WA 98402 USA
关键词
D O I
10.1145/2975167.2985648
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Being able to stratify patients according to 30-day hospital readmission risk, anticipated length and cost of stay can guide clinicians in discharge planning and intervention recommendation, leading to an increase of quality of care, and a decrease of healthcare cost. We present a comparative performance analysis of decision trees, boosted decision trees and logistic regression models that can flag, at the time of discharge, patients with an anticipated early, lengthy and expensive readmission. We validate our models using discharge records of 500K congestive heart failure patients from California-licensed hospitals.
引用
收藏
页码:491 / 492
页数:2
相关论文
共 50 条
  • [41] Comparison of predictive models for hospital readmission of heart failure patients with cost-sensitive approach
    Landicho, Junar Arciete
    Esichaikul, Vatcharaporn
    Sasil, Roy Magdugo
    INTERNATIONAL JOURNAL OF HEALTHCARE MANAGEMENT, 2021, 14 (04) : 1536 - 1541
  • [42] PREDICTION OF MORTALITY AND HOSPITAL READMISSION FOR HEART FAILURE: A SIMPLIFIED RISK SCORE
    Sadek, R.
    Lee, C. S.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2019, 67 (01) : 69 - 69
  • [43] Socioeconomic status as an independent risk factor for hospital readmission for heart failure
    Philbin, EF
    Dec, GW
    Jenkins, PL
    DiSalvo, TG
    AMERICAN JOURNAL OF CARDIOLOGY, 2001, 87 (12): : 1367 - 1371
  • [44] Length of hospital stay in acute heart failure and risk of early readmission
    Bosch Campos, M. J.
    Paya, A.
    Cardells, I.
    Escribano, D.
    Santas, E.
    Minana, G.
    Molla, A.
    Sanchis, J.
    Chorro, F. J.
    Nunez, J.
    EUROPEAN JOURNAL OF HEART FAILURE, 2016, 18 : 120 - 120
  • [45] Novel Data Domains and Machine Learning Modestly Improved Performance of Risk Calculators for Heart Failure Readmission
    Savitz, S.
    Leong, T.
    Sung, S. H.
    Lee, K.
    Rana, J.
    Tabada, G.
    Go, A.
    HEALTH SERVICES RESEARCH, 2020, 55 : 85 - 85
  • [46] Interpretable Machine Learning Identifies Risk Predictors in Patients With Heart Failure
    Zame, William
    Yoon, Jinsung
    Asselbergs, Folkert
    Van der Schaar, Michaela
    CIRCULATION, 2018, 138
  • [47] PUTTING VETERANS FIRST FAILURE INTERVENTION RISK STRATIFICATION TOOL TO REDUCE 30 DAY READMISSION FOR PATIENTS WITH CONGESTIVE HEART FAILURE
    Ogunwole, Serena M.
    Phillips, Jason
    Wathen, Patricia
    JOURNAL OF GENERAL INTERNAL MEDICINE, 2017, 32 : S790 - S791
  • [48] An Interpretable Machine Learning Approach for Predicting Hospital Length of Stay and Readmission
    Liu, Yuxi
    Qin, Shaowen
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2021, PT I, 2022, 13087 : 73 - 85
  • [49] Machine learning to predict in-hospital outcomes in patients with acute heart failure
    Sibilia, B.
    Toupin, S.
    Dillinger, J. G.
    Brette, J. B.
    Ramonatxo, A.
    Schurtz, G.
    Hamzi, K.
    Trimaille, A.
    Bouali, N.
    Piliero, N.
    Logeart, D.
    Andrieu, S.
    Picard, F.
    Henry, P.
    Pezel, T.
    EUROPEAN HEART JOURNAL, 2023, 44
  • [50] Patient stratification for risk of readmission due to heart failure by using nationwide administrative data
    Constantinou, Panayotis
    Pelletier-Fleury, Nathalie
    Olie, Valerie
    Gastaldi-Menager, Christelle
    Juillere, Yves
    Tuppin, Philippe
    JOURNAL OF CARDIAC FAILURE, 2021, 27 (03) : 266 - 276