A machine learning-based risk stratification tool for in-hospital mortality of intensive care unit patients with heart failure

被引:0
|
作者
Cida Luo
Yi Zhu
Zhou Zhu
Ranxi Li
Guoqin Chen
Zhang Wang
机构
[1] South China Normal University-Panyu Central Hospital Joint Laboratory of Basic and Translational Medical Research,School of Life Sciences
[2] Guangzhou Panyu Central Hospital,Department of Cardiology
[3] South China Normal University,undefined
[4] Guangzhou Panyu Central Hospital,undefined
关键词
Machine learning models; Heart failure; Extreme gradient boosting; Medical information mart for intensive care; Risk stratification;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Machine learning-based prognostic model for in-hospital mortality of aortic dissection: Insights from an intensive care medicine perspective
    Lei, Jiahao
    Zhang, Zhuojing
    Li, Yixuan
    Wu, Zhaoyu
    Pu, Hongji
    Xu, Zhijue
    Yang, Xinrui
    Hu, Jiateng
    Liu, Guang
    Qiu, Peng
    Chen, Tao
    Lu, Xinwu
    DIGITAL HEALTH, 2024, 10
  • [22] Novel risk stratification with time course assessment of in-hospital mortality in patients with acute heart failure
    Yagyu, Takeshi
    Kumada, Masahiro
    Nakagawa, Tsutomu
    PLOS ONE, 2017, 12 (11):
  • [23] Machine learning algorithms for claims data-based prediction of in-hospital mortality in patients with heart failure
    Koenig, Sebastian
    Pellissier, Vincent
    Hohenstein, Sven
    Bernal, Andres
    Ueberham, Laura
    Meier-Hellmann, Andreas
    Kuhlen, Ralf
    Hindricks, Gerhard
    Bollmann, Andreas
    ESC HEART FAILURE, 2021, 8 (04): : 3026 - 3036
  • [24] A Machine Learning Based Risk Stratification Tool to Coordinate Referrals Between Inpatient Specialty and Palliative Care for Patients with Heart Failure
    Nau, Claudia
    Khang, Peter
    Ichiuji, Anne
    Lee, Mingsum
    Buttler, Rebecca
    Lee, Janet
    Chen, Aiyu
    Li, Iona
    Huong Nguyen
    JOURNAL OF PAIN AND SYMPTOM MANAGEMENT, 2020, 60 (01) : 211 - 212
  • [25] Machine Learning-Based Models Incorporating Social Determinants of Health vs Traditional Models for Predicting In-Hospital Mortality in Patients With Heart Failure
    Segar, Matthew W.
    Hall, Jennifer L.
    Jhund, Pardeep S.
    Powell-Wiley, Tiffany M.
    Morris, Alanna A.
    Kao, David
    Fonarow, Gregg C.
    Hernandez, Rosalba
    Ibrahim, Nasrien E.
    Rutan, Christine
    Navar, Ann Marie
    Stevens, Laura M.
    Pandey, Ambarish
    JAMA CARDIOLOGY, 2022, 7 (08) : 844 - 854
  • [26] Predicting In-Hospital Mortality Among Patients Admitted With Heart Failure: A Machine Learning Approach
    He, Rosemary
    Jawadi, Zina
    Srivastava, Pratyaksh
    Khalil, Suzan
    Eskin, Eleazar
    Chiang, Jeffrey
    Nsair, Ali
    CIRCULATION, 2022, 146
  • [27] Barriers and Opportunities Regarding Implementation of a Machine Learning-Based Acute Heart Failure Risk Stratification Tool in the Emergency Department
    Sax, Dana R.
    Sturmer, Lillian R.
    Mark, Dustin G.
    Rana, Jamal S.
    Reed, Mary E.
    DIAGNOSTICS, 2022, 12 (10)
  • [28] Prediction model of in-hospital mortality in intensive care unit patients with cardiac arrest: a retrospective analysis of MIMIC -IV database based on machine learning
    Sun, Yiwu
    He, Zhaoyi
    Ren, Jie
    Wu, Yifan
    BMC ANESTHESIOLOGY, 2023, 23 (01)
  • [29] Prediction model of in-hospital mortality in intensive care unit patients with cardiac arrest: a retrospective analysis of MIMIC -IV database based on machine learning
    Yiwu Sun
    Zhaoyi He
    Jie Ren
    Yifan Wu
    BMC Anesthesiology, 23
  • [30] Ventricular tachycardia and in-hospital mortality in the intensive care unit
    Prasad, Priya A.
    Isaksen, Jonas L.
    Abe-Jones, Yumiko
    Zegre-Hemsey, Jessica K.
    Sommargren, Claire E.
    Al-Zaiti, Salah S.
    Carey, Mary G.
    Badilini, Fabio
    Mortara, David
    Kanters, Jorgen K.
    Pelter, Michele M.
    HEART RHYTHM O2, 2023, 4 (11): : 715 - 722