Volatility Uncertainty Quantification in a Stochastic Control Problem Applied to Energy

被引:0
|
作者
Francisco Bernal
Emmanuel Gobet
Jacques Printems
机构
[1] Ecole Polytechnique,CMAP
[2] Université Paris-Est Créteil,LAMA
关键词
Chaos expansion; Uncertainty quantification; Stochastic control; Stochastic programming; Swing options; Monte Carlo simulations; 93Exx; 62L20; 41A10; 90C15; 49L20;
D O I
暂无
中图分类号
学科分类号
摘要
This work designs a methodology to quantify the uncertainty of a volatility parameter in a stochastic control problem arising in energy management. The difficulty lies in the non-linearity of the underlying scalar Hamilton-Jacobi-Bellman equation. We proceed by decomposing the unknown solution on a Hermite polynomial basis (of the unknown volatility), whose different coefficients are solutions to a system of second order parabolic non-linear PDEs. Numerical tests show that computing the first basis elements may be enough to get an accurate approximation with respect to the uncertain volatility parameter. We provide an example of the methodology in the context of a swing contract (energy contract with flexibility in purchasing energy power), this allows us to introduce the concept of Uncertainty Value Adjustment (UVA), whose aim is to value the risk of misspecification of the volatility model.
引用
收藏
页码:135 / 159
页数:24
相关论文
共 50 条
  • [41] A hybrid stochastic Galerkin method for uncertainty quantification applied to a conservation law modelling a clarifier-thickener unit
    Buerger, Raimund
    Kroeker, Ilja
    Rohde, Christian
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2014, 94 (10): : 793 - 817
  • [42] APPLICATION OF THE λ NEUMANN-MONTE CARLO METHODOLOGY FOR QUANTIFICATION OF THE UNCERTAINTY OF THE PROBLEM OF STOCHASTIC BENDING OF KIRCHHOFF PLATES
    Avila da Silva Jr, Claudio R.
    Squarcio, Roberto M. F.
    Cavichiolo, Joao L.
    da Neto, Joao Morais
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2021, 11 (03) : 85 - 97
  • [43] On stochastic optimal control for stock price volatility
    Ying, YR
    Lin, Y
    Wu, CF
    KYBERNETES, 2003, 32 (5-6) : 898 - 904
  • [44] Uncertainty Quantification in Energy Management Procedures
    Giaccone, Luca
    Lazzeroni, Paolo
    Repetto, Maurizio
    ELECTRONICS, 2020, 9 (09) : 1 - 10
  • [45] Uncertainty quantification applied to the radiological characterization of radioactive waste
    Zaffora, B.
    Magistris, M.
    Saporta, G.
    Chevalier, J. -P.
    APPLIED RADIATION AND ISOTOPES, 2017, 127 : 142 - 149
  • [46] Lagrangian Uncertainty Quantification and Information Inequalities for Stochastic Flows
    Branicki, Michal
    Uda, Kenneth
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (03): : 1242 - 1313
  • [47] A Nonparametric Bayesian Framework for Uncertainty Quantification in Stochastic Simulation
    Xie, Wei
    Li, Cheng
    Wu, Yuefeng
    Zhang, Pu
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (04): : 1527 - 1552
  • [48] A review of entropy measures for uncertainty quantification of stochastic processes
    Namdari, Alireza
    Li, Zhaojun
    ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (06)
  • [49] Bayesian uncertainty quantification applied to RANS turbulence models
    Oliver, Todd A.
    Moser, Robert D.
    13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): STATISTICAL ASPECTS, MODELLING AND SIMULATIONS OF TURBULENCE, 2011, 318
  • [50] Uncertainty quantification for a flapping airfoil with a stochastic velocity deviation
    赵良玉
    杨树兴
    徐勇
    Journal of Beijing Institute of Technology, 2011, 20 (03) : 324 - 330