Volatility Uncertainty Quantification in a Stochastic Control Problem Applied to Energy

被引:0
|
作者
Francisco Bernal
Emmanuel Gobet
Jacques Printems
机构
[1] Ecole Polytechnique,CMAP
[2] Université Paris-Est Créteil,LAMA
关键词
Chaos expansion; Uncertainty quantification; Stochastic control; Stochastic programming; Swing options; Monte Carlo simulations; 93Exx; 62L20; 41A10; 90C15; 49L20;
D O I
暂无
中图分类号
学科分类号
摘要
This work designs a methodology to quantify the uncertainty of a volatility parameter in a stochastic control problem arising in energy management. The difficulty lies in the non-linearity of the underlying scalar Hamilton-Jacobi-Bellman equation. We proceed by decomposing the unknown solution on a Hermite polynomial basis (of the unknown volatility), whose different coefficients are solutions to a system of second order parabolic non-linear PDEs. Numerical tests show that computing the first basis elements may be enough to get an accurate approximation with respect to the uncertain volatility parameter. We provide an example of the methodology in the context of a swing contract (energy contract with flexibility in purchasing energy power), this allows us to introduce the concept of Uncertainty Value Adjustment (UVA), whose aim is to value the risk of misspecification of the volatility model.
引用
收藏
页码:135 / 159
页数:24
相关论文
共 50 条
  • [31] A sparse multiresolution stochastic approximation for uncertainty quantification
    Schiavazzi, D.
    Doostan, A.
    Iaccarino, G.
    RECENT ADVANCES IN SCIENTIFIC COMPUTING AND APPLICATIONS, 2013, 586 : 295 - +
  • [32] SPECIAL ISSUE ON UNCERTAINTY QUANTIFICATION AND STOCHASTIC MODELING
    Beck, Andre T.
    Trindade, Marcelo A.
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2013, 3 (06) : VII - VIII
  • [33] Comparison of Stochastic Sampling Algorithms for Uncertainty Quantification
    Mohamed, Linah
    Christie, Mike
    Demyanov, Vasily
    SPE JOURNAL, 2010, 15 (01): : 31 - 38
  • [34] The volatility of global energy uncertainty: Renewable alternatives
    Isik, Cem
    Kuziboev, Bekhzod
    Ongan, Serdar
    Saidmamatov, Olimjon
    Mirkhoshimova, Mokhirakhon
    Rajabov, Alibek
    ENERGY, 2024, 297
  • [35] Distributionally Robust Uncertainty Quantification via Data-Driven Stochastic Optimal Control
    Pan, Guanru
    Faulwasser, Timm
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3036 - 3041
  • [36] Measuring Economic Uncertainty in Syria: An Approach to the Stochastic Volatility Model
    Alakkari, Khder
    Yadav, Shikha
    Mishra, Pradeep
    INDIAN JOURNAL OF ECONOMICS AND DEVELOPMENT, 2022, 18 (02) : 281 - 291
  • [37] MAXIMUM PRINCIPLE FOR STOCHASTIC RECURSIVE OPTIMAL CONTROL PROBLEM UNDER MODEL UNCERTAINTY
    Hu, Mingshang
    Wang, Falei
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (03) : 1341 - 1370
  • [38] Stochastic Intermittent Control with Uncertainty
    Ma, Zhengqi
    Jiang, Hongyin
    Li, Chun
    Zhang, Defei
    Liu, Xiaoyou
    MATHEMATICS, 2024, 12 (13)
  • [39] Escape problem under stochastic volatility: The Heston model
    Masoliver, Jaume
    Perello, Josep
    PHYSICAL REVIEW E, 2008, 78 (05):
  • [40] The optimal investment problem in stochastic and local volatility models
    Piterbarg, Vladimir V.
    JOURNAL OF INVESTMENT STRATEGIES, 2018, 7 (04): : 1 - 25