A deterministic sparse FFT algorithm for vectors with small support

被引:0
|
作者
Gerlind Plonka
Katrin Wannenwetsch
机构
[1] Institute for Numerical and Applied Mathematics,University of Göttingen
来源
Numerical Algorithms | 2016年 / 71卷
关键词
Discrete Fourier transform; Sparse Fourier reconstruction; Sublinear sparse FFT; 65T50; 42A38;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the special case where a signal x∈ℂN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\in }\,\mathbb {C}^{N}$\end{document} is known to vanish outside a support interval of length m < N. If the support length m of x or a good bound of it is a-priori known we derive a sublinear deterministic algorithm to compute x from its discrete Fourier transform x̂∈ℂN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat {\mathbf x}\,{\in }\,\mathbb {C}^{N}$\end{document}. In case of exact Fourier measurements we require only O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal O}$\end{document}(mlog\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\log $\end{document}m) arithmetical operations. For noisy measurements, we propose a stable O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal O}$\end{document}(mlog\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\log $\end{document}N) algorithm.
引用
收藏
页码:889 / 905
页数:16
相关论文
共 50 条
  • [41] Gene selection using genetic algorithm and support vectors machines
    Shutao Li
    Xixian Wu
    Xiaoyan Hu
    Soft Computing, 2008, 12 : 693 - 698
  • [42] Active Learning Algorithm Based on Fast Optimization of Support Vectors
    Xu, Hailong
    Li, Longyue
    Guo, Pengsong
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (10)
  • [43] Gene selection using genetic algorithm and support vectors machines
    Li, Shutao
    Wu, Xixian
    Hu, Xiaoyan
    SOFT COMPUTING, 2008, 12 (07) : 693 - 698
  • [44] An Improved Deterministic #SAT Algorithm for Small de Morgan Formulas
    Chen, Ruiwen
    Kabanets, Valentine
    Saurabh, Nitin
    ALGORITHMICA, 2016, 76 (01) : 68 - 87
  • [45] An Improved Deterministic #SAT Algorithm for Small de Morgan Formulas
    Ruiwen Chen
    Valentine Kabanets
    Nitin Saurabh
    Algorithmica, 2016, 76 : 68 - 87
  • [46] An Improved Deterministic #SAT Algorithm for Small De Morgan Formulas
    Chen, Ruiwen
    Kabanets, Valentine
    Saurabh, Nitin
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE, PT II, 2014, 8635 : 165 - 176
  • [47] Efficient Sparse Code Multiple Access Decoder Based on Deterministic Message Passing Algorithm
    Zhang, Chuan
    Yang, Chao
    Pang, Xu
    Song, Wenqing
    Xu, Wei
    Zhang, Shunqing
    Zhang, Zaichen
    You, Xiaohu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (04) : 3562 - 3574
  • [48] Fault diagnosis for BLDCM system used FFT algorithm and support vector machines
    Xu, Liyu
    Zhou, Yuanjun
    2016 IEEE/CSAA INTERNATIONAL CONFERENCE ON AIRCRAFT UTILITY SYSTEMS (AUS), 2016, : 384 - 387
  • [49] Codes for Exact Support Recovery of Sparse Vectors from Inaccurate Linear Measurements and Their Decoding
    M. Fernandez
    G. A. Kabatiansky
    S. A. Kruglik
    Y. Miao
    Problems of Information Transmission, 2023, 59 : 14 - 21
  • [50] Codes for Exact Support Recovery of Sparse Vectors from Inaccurate Linear Measurements and Their Decoding
    Fernandez, M.
    Kabatiansky, G. A.
    Kruglik, S. A.
    Miao, Y.
    PROBLEMS OF INFORMATION TRANSMISSION, 2023, 59 (01) : 14 - 21