A deterministic sparse FFT algorithm for vectors with small support

被引:0
|
作者
Gerlind Plonka
Katrin Wannenwetsch
机构
[1] Institute for Numerical and Applied Mathematics,University of Göttingen
来源
Numerical Algorithms | 2016年 / 71卷
关键词
Discrete Fourier transform; Sparse Fourier reconstruction; Sublinear sparse FFT; 65T50; 42A38;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the special case where a signal x∈ℂN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\in }\,\mathbb {C}^{N}$\end{document} is known to vanish outside a support interval of length m < N. If the support length m of x or a good bound of it is a-priori known we derive a sublinear deterministic algorithm to compute x from its discrete Fourier transform x̂∈ℂN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat {\mathbf x}\,{\in }\,\mathbb {C}^{N}$\end{document}. In case of exact Fourier measurements we require only O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal O}$\end{document}(mlog\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\log $\end{document}m) arithmetical operations. For noisy measurements, we propose a stable O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal O}$\end{document}(mlog\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\log $\end{document}N) algorithm.
引用
收藏
页码:889 / 905
页数:16
相关论文
共 50 条
  • [21] An improved clustering algorithm based support vectors
    Chen, Donghui
    Liu, Zhijing
    Wang, Zonghu
    Journal of Computational Information Systems, 2011, 7 (13): : 4610 - 4618
  • [22] Extension of Sparse Randomized Kaczmarz Algorithm for Multiple Measurement Vectors
    Aggarwal, Hemant Kumar
    Majumdar, Angshul
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 1014 - 1019
  • [23] A sequential algorithm for sparse support vector classifiers
    Peng, Jian-Xun
    Ferguson, Stuart
    Rafferty, Karen
    Stewart, Victoria
    PATTERN RECOGNITION, 2013, 46 (04) : 1195 - 1208
  • [24] Nearly Optimal Deterministic Algorithm for Sparse Walsh-Hadamard Transform
    Cheraghchi, Mahdi
    Indyk, Piotr
    ACM TRANSACTIONS ON ALGORITHMS, 2017, 13 (03)
  • [25] Improved bounds for a Deterministic sublinear-time Sparse Fourier algorithm
    Iwen, M. A.
    Spencer, C. V.
    2008 42ND ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, VOLS 1-3, 2008, : 458 - 463
  • [26] A sparse fast Fourier algorithm for real non-negative vectors
    Plonka, Gerlind
    Wannenwetsch, Katrin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 321 : 532 - 539
  • [27] A Noniterative Online Bayesian Algorithm for the Recovery of Temporally Correlated Sparse Vectors
    Joseph, Geethu
    Murthy, Chandra R.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (20) : 5510 - 5525
  • [28] Estimation of a sparse group of sparse vectors
    Abramovich, Felix
    Grinshtein, Vadim
    BIOMETRIKA, 2013, 100 (02) : 355 - 370
  • [29] A Multi-Classification Algorithm Based on Support Vectors
    Cao, Jian
    Sun, Shiyu
    Duan, Xiusheng
    2013 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2013, : 305 - 307
  • [30] Online algorithm based on support vectors for orthogonal regression
    Souza, Roberto C. S. N. P.
    Leite, Saul C.
    Borges, Carlos C. H.
    Neto, Raul Fonseca
    PATTERN RECOGNITION LETTERS, 2013, 34 (12) : 1394 - 1404