A deterministic sparse FFT algorithm for vectors with small support

被引:0
|
作者
Gerlind Plonka
Katrin Wannenwetsch
机构
[1] Institute for Numerical and Applied Mathematics,University of Göttingen
来源
Numerical Algorithms | 2016年 / 71卷
关键词
Discrete Fourier transform; Sparse Fourier reconstruction; Sublinear sparse FFT; 65T50; 42A38;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the special case where a signal x∈ℂN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\in }\,\mathbb {C}^{N}$\end{document} is known to vanish outside a support interval of length m < N. If the support length m of x or a good bound of it is a-priori known we derive a sublinear deterministic algorithm to compute x from its discrete Fourier transform x̂∈ℂN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat {\mathbf x}\,{\in }\,\mathbb {C}^{N}$\end{document}. In case of exact Fourier measurements we require only O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal O}$\end{document}(mlog\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\log $\end{document}m) arithmetical operations. For noisy measurements, we propose a stable O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal O}$\end{document}(mlog\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\log $\end{document}N) algorithm.
引用
收藏
页码:889 / 905
页数:16
相关论文
共 50 条
  • [1] A deterministic sparse FFT algorithm for vectors with small support
    Plonka, Gerlind
    Wannenwetsch, Katrin
    NUMERICAL ALGORITHMS, 2016, 71 (04) : 889 - 905
  • [2] Deterministic sparse FFT for M-sparse vectors
    Gerlind Plonka
    Katrin Wannenwetsch
    Annie Cuyt
    Wen-shin Lee
    Numerical Algorithms, 2018, 78 : 133 - 159
  • [3] Deterministic sparse FFT for M-sparse vectors
    Plonka, Gerlind
    Wannenwetsch, Katrin
    Cuyt, Annie
    Lee, Wen-shin
    NUMERICAL ALGORITHMS, 2018, 78 (01) : 133 - 159
  • [4] Deterministic Sparse Sublinear FFT with Improved Numerical Stability
    Gerlind Plonka
    Therese von Wulffen
    Results in Mathematics, 2021, 76
  • [5] Deterministic Sparse Sublinear FFT with Improved Numerical Stability
    Plonka, Gerlind
    von Wulffen, Therese
    RESULTS IN MATHEMATICS, 2021, 76 (02)
  • [6] A deterministic sparse FFT for functions with structured Fourier sparsity
    Sina Bittens
    Ruochuan Zhang
    Mark A. Iwen
    Advances in Computational Mathematics, 2019, 45 : 519 - 561
  • [7] A deterministic sparse FFT for functions with structured Fourier sparsity
    Bittens, Sina
    Zhang, Ruochuan
    Iwen, Mark A.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (02) : 519 - 561
  • [8] Recursion algorithm for FFT with sparse points
    Zhao, Jianyang
    Zhang, Lingmi
    Zhendong yu Chongji/Journal of Vibration and Shock, 2006, 25 (02): : 48 - 50
  • [9] Sparse Interpolation, the FFT Algorithm and FIR Filters
    Briani, Matteo
    Cuyt, Annie
    Lee, Wen-shin
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2017, 2017, 10490 : 27 - 39
  • [10] Algorithm is faster than FFT for all sparse signals
    不详
    LASER FOCUS WORLD, 2012, 48 (02): : 9 - 9