The General Solution of the Eisenhart Equation and Projective Motions of Pseudo-Riemannian Manifolds

被引:0
|
作者
A. V. Aminova
M. N. Sabitova
机构
[1] Kazan (Volga Region) Federal University,Queens College
[2] City University of New York (CUNY),undefined
[3] Queens,undefined
来源
Mathematical Notes | 2020年 / 107卷
关键词
Eisenhart equation; h-space; projective motion; curvature;
D O I
暂无
中图分类号
学科分类号
摘要
The solution of the Eisenhart equation for pseudo-Riemannian manifolds (Mn,g) of arbitrary signature and any dimension is obtained. Thereby, pseudo-Riemannian h-spaces (i.e., spaces admitting nontrivial solutions h ≠ cg of the Eisenhart equation) of all possible types determined by the Segrè characteristic χ of the bilinear form h are found. Necessary and sufficient conditions for the existence of an infinitesimal projective transformation in (Mn,g) are given. The curvature 2-form of a (rigid) h-space of type χ = {r1, …, rk} is calculated and necessary and sufficient conditions for this space to have constant curvature are obtained.
引用
收藏
页码:875 / 886
页数:11
相关论文
共 50 条
  • [41] Parallel pure spinors on pseudo-Riemannian manifolds
    Kath, I
    GEOMETRY AND TOPOLOGY OF SUBMANIFOLDS X: DIFFERENTIAL GEOMETRY IN HONOR OF PROF S.S. CHERN, 2000, : 87 - 103
  • [42] A Comprehensive Survey on Parallel Submanifolds in Riemannian and Pseudo-Riemannian Manifolds
    Chen, Bang-Yen
    AXIOMS, 2019, 8 (04)
  • [43] Directed Graph Embeddings in Pseudo-Riemannian Manifolds
    Sim, Aaron
    Wiatrak, Maciej
    Brayne, Angus
    Creed, Paidi
    Paliwal, Saee
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [44] SOME HARMONIC MAPS ON PSEUDO-RIEMANNIAN MANIFOLDS
    WHITMAN, AP
    KNILL, RJ
    STOEGER, WR
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1986, 25 (10) : 1139 - 1153
  • [45] Z-TOPOLOGY ON PSEUDO-RIEMANNIAN MANIFOLDS
    QUAN, PM
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (14): : 945 - 947
  • [46] Biharmonic vector fields on pseudo-Riemannian manifolds
    Markellos, M.
    Urakawa, H.
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 130 : 293 - 314
  • [47] Pseudo-Riemannian manifolds with recurrent spinor fields
    A. S. Galaev
    Siberian Mathematical Journal, 2013, 54 : 604 - 613
  • [48] Pseudo-Riemannian manifolds modelled on symmetric spaces
    Dusek, Zdenek
    Kowalski, Oldrich
    MONATSHEFTE FUR MATHEMATIK, 2012, 165 (3-4): : 319 - 326
  • [49] Indefinite Kasparov Modules and Pseudo-Riemannian Manifolds
    van den Dungen, Koen
    Rennie, Adam
    ANNALES HENRI POINCARE, 2016, 17 (11): : 3255 - 3286
  • [50] Parallel spinors on pseudo-Riemannian spinc manifolds
    Ikemakhen, Aziz
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (09) : 1473 - 1483