The General Solution of the Eisenhart Equation and Projective Motions of Pseudo-Riemannian Manifolds

被引:0
|
作者
A. V. Aminova
M. N. Sabitova
机构
[1] Kazan (Volga Region) Federal University,Queens College
[2] City University of New York (CUNY),undefined
[3] Queens,undefined
来源
Mathematical Notes | 2020年 / 107卷
关键词
Eisenhart equation; h-space; projective motion; curvature;
D O I
暂无
中图分类号
学科分类号
摘要
The solution of the Eisenhart equation for pseudo-Riemannian manifolds (Mn,g) of arbitrary signature and any dimension is obtained. Thereby, pseudo-Riemannian h-spaces (i.e., spaces admitting nontrivial solutions h ≠ cg of the Eisenhart equation) of all possible types determined by the Segrè characteristic χ of the bilinear form h are found. Necessary and sufficient conditions for the existence of an infinitesimal projective transformation in (Mn,g) are given. The curvature 2-form of a (rigid) h-space of type χ = {r1, …, rk} is calculated and necessary and sufficient conditions for this space to have constant curvature are obtained.
引用
收藏
页码:875 / 886
页数:11
相关论文
共 50 条
  • [21] Reductive homogeneous pseudo-Riemannian manifolds
    Gadea, PM
    Oubina, JA
    MONATSHEFTE FUR MATHEMATIK, 1997, 124 (01): : 17 - 34
  • [22] Biharmonic submanifolds of pseudo-Riemannian manifolds
    Dong, Yuxin
    Ou, Ye-Lin
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 112 : 252 - 262
  • [23] Curvature measures of pseudo-Riemannian manifolds
    Bernig, Andreas
    Faifman, Dmitry
    Solanes, Gil
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (788): : 77 - 127
  • [24] ON MAXIMAL SUBMANIFOLDS IN PSEUDO-RIEMANNIAN MANIFOLDS
    SHEN, YB
    CHINESE SCIENCE BULLETIN, 1990, 35 (22): : 1932 - 1933
  • [25] Structure of the Projective Group in A Pseudo-Riemannian Space
    Z. Kh. Zakirova
    Theoretical and Mathematical Physics, 2018, 196 : 965 - 975
  • [26] Structure of the Projective Group in A Pseudo-Riemannian Space
    Zakirova, Z. Kh.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 196 (01) : 965 - 975
  • [27] Pseudo-Riemannian Jacobi-Videv manifolds
    Gilkey, P.
    Nikcevic, S.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2007, 4 (05) : 727 - 738
  • [28] INVARIANT COEFFICIENT OPERATORS ON PSEUDO-RIEMANNIAN MANIFOLDS
    BABBITT, D
    JOURNAL OF MATHEMATICS AND MECHANICS, 1966, 15 (04): : 643 - &
  • [29] PSEUDO-RIEMANNIAN MANIFOLDS WITH TOTALLY GEODESIC BISECTORS
    BEEM, JK
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A205 - A205
  • [30] Pseudo-Riemannian Manifolds with Commuting Jacobi Operators
    Brozos-Vázquez M.
    Gilkey P.
    Rendiconti del Circolo Matematico di Palermo, 2006, 55 (2) : 163 - 174