The solution of the Eisenhart equation for pseudo-Riemannian manifolds (Mn,g) of arbitrary signature and any dimension is obtained. Thereby, pseudo-Riemannian h-spaces (i.e., spaces admitting nontrivial solutions h ≠ cg of the Eisenhart equation) of all possible types determined by the Segrè characteristic χ of the bilinear form h are found. Necessary and sufficient conditions for the existence of an infinitesimal projective transformation in (Mn,g) are given. The curvature 2-form of a (rigid) h-space of type χ = {r1, …, rk} is calculated and necessary and sufficient conditions for this space to have constant curvature are obtained.
机构:
Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C 08193 Bellaterra (Cerdanyola del Vallès), BarcelonaDepartament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C 08193 Bellaterra (Cerdanyola del Vallès), Barcelona
Girbau J.
Bruna L.
论文数: 0引用数: 0
h-index: 0
机构:
Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C 08193 Bellaterra (Cerdanyola del Vallès), BarcelonaDepartament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C 08193 Bellaterra (Cerdanyola del Vallès), Barcelona
Bruna L.
Progress in Mathematical Physics,
2010,
58
: 1
-
17
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Chen, Zhiqi
Zhu, Fuhai
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China