Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate

被引:0
|
作者
Feng Yang He
Ye Bin Cheng
Tie Jun Tong
机构
[1] Ji’nan University,Department of Statistics
[2] Donghua University,Glorious Sun School of Business and Management
[3] Hong Kong Baptist University,Department of Mathematics
关键词
Extreme conditional quantile; extreme value theory; nonparametric modeling; functional covariate; 62G32;
D O I
暂无
中图分类号
学科分类号
摘要
Estimation of the extreme conditional quantiles with functional covariate is an important problem in quantile regression. The existing methods, however, are only applicable for heavy-tailed distributions with a positive conditional tail index. In this paper, we propose a new framework for estimating the extreme conditional quantiles with functional covariate that combines the nonparametric modeling techniques and extreme value theory systematically. Our proposed method is widely applicable, no matter whether the conditional distribution of a response variable Y given a vector of functional covariates X is short, light or heavy-tailed. It thus enriches the existing literature.
引用
收藏
页码:1589 / 1610
页数:21
相关论文
共 50 条
  • [21] Nonparametric regression estimation of conditional tails: the random covariate case
    Goegebeur, Yuri
    Guillou, Armelle
    Schorgen, Antoine
    STATISTICS, 2014, 48 (04) : 732 - 755
  • [22] Nonparametric prewhitening estimators for conditional quantiles
    Su, Liangjun
    Ullah, Aman
    STATISTICA SINICA, 2008, 18 (03) : 1131 - 1152
  • [23] Nonparametric prediction by conditional median and quantiles
    Gannoun, A
    Saracco, J
    Yu, KM
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 117 (02) : 207 - 223
  • [24] Spline estimation of conditional quantiles for functional covariates.
    Cardot, H
    Crambes, C
    Sarda, P
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (02) : 141 - 144
  • [25] Nonparametric estimation of multivariate quantiles
    Coblenz, M.
    Dyckerhoff, R.
    Grothe, O.
    ENVIRONMETRICS, 2018, 29 (02)
  • [26] Nonparametric estimation of a maximum of quantiles
    Enss, Georg C.
    Goetz, Benedict
    Kohler, Michael
    Krzyzak, Adam
    Platz, Roland
    ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 3176 - 3192
  • [27] Nonparametric estimation of time-dependent ROC curves conditional on a continuous covariate
    Rodriguez-Alvarez, Maria Xose
    Meira-Machado, Luis
    Abu-Assi, Emad
    Raposeiras-Roubin, Sergio
    STATISTICS IN MEDICINE, 2016, 35 (07) : 1090 - 1102
  • [28] NONPARAMETRIC INFERENCE FOR CONDITIONAL QUANTILES OF TIME SERIES
    Xu, Ke-Li
    ECONOMETRIC THEORY, 2013, 29 (04) : 673 - 698
  • [29] SUBSAMPLING INFERENCE FOR NONPARAMETRIC EXTREMAL CONDITIONAL QUANTILES
    Kurisu, Daisuke
    Otsu, Taisuke
    ECONOMETRIC THEORY, 2023,
  • [30] Functional estimation of extreme conditional expectiles
    Girard, Stephane
    Stupfler, Gilles
    Usseglio-Carleve, Antoine
    ECONOMETRICS AND STATISTICS, 2022, 21 : 131 - 158