Analytical study of D-dimensional fractional Klein–Gordon equation with a fractional vector plus a scalar potential

被引:0
|
作者
Tapas Das
Uttam Ghosh
Susmita Sarkar
Shantanu Das
机构
[1] Kodalia Prasanna Banga High School (H.S),Department of Applied Mathematics
[2] University of Calcutta,undefined
[3] Reactor Control System Design Section (E & I Group),undefined
[4] Bhabha Atomic Research Centre,undefined
来源
Pramana | 2020年 / 94卷
关键词
Fractional Klein–Gordon equation; power series method; fractional Coulomb potential; Mittag–Leffler function; 02.30.–f; 03.65.Db; 03.65.Ge; 02.30.Rz;
D O I
暂无
中图分类号
学科分类号
摘要
D-dimensional fractional Klein–Gordon equation with fractional vector and scalar potential has been studied. Both fractional potentials are taken as attractive Coulomb-type with different multiplicative parameters, namely v and s. Jumarie-type definitions for fractional calculus have been used. We have succeeded in achieving Whittaker-type classical differential equation in fractional mode for the required eigenfunction. Fractional Whittaker equation has been manipulated using the behaviour of the eigenfunction at asymptotic distance and origin. This manipulation delivers fractional-type confluent hypergeometric equation to solve. Power series method has been employed to do the task. All the obtained results agree with the existing results in literature when fractional parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is unity. Finally, we furnish numerical results with a few eigenfunction graphs for different spatial dimensions and fractional parameters.
引用
收藏
相关论文
共 50 条
  • [41] Solitary waves for a fractional Klein-Gordon-Maxwell equation
    Zhang, Xin
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2021, (94) : 1 - 13
  • [42] Numerical estimation of the fractional Klein-Gordon equation with Discrete
    Partohaghighi, Mohammad
    Mortezaee, Marzieh
    Akgul, Ali
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 90 : 44 - 53
  • [43] A New Perspective on The Numerical Solution for Fractional Klein Gordon Equation
    Karaagac, Berat
    Ucar, Yusuf
    Yagmurlu, N. Murat
    Esen, Alaattin
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2019, 22 (02): : 443 - 451
  • [44] NOVEL APPROACHES TO FRACTIONAL KLEIN-GORDON-ZAKHAROV EQUATION
    Wang, Kang Le
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (07)
  • [45] Solutions of D-dimensional Klein–Gordon equation for multiparameter exponential-type potential using supersymmtric quantum mechanics
    A. N. Ikot
    H. P. Obong
    H. Hassanabadi
    N. Salehi
    O. S. Thomas
    Indian Journal of Physics, 2015, 89 : 649 - 656
  • [46] Approximate solutions of D-dimensional Klein-Gordon equation with Yukawa potential via Nikiforov-Uvarov method
    Inyang, Etido P.
    Inyang, Ephraim P.
    Ntibi, Joseph E.
    Ibekwe, Etebong E.
    William, Eddy S.
    INDIAN JOURNAL OF PHYSICS, 2021, 95 (12) : 2733 - 2739
  • [47] A Model of Modified Klein-Gordon Equation with Modified Scalar-vector Yukawa Potential
    Maireche, Abdelmadjid
    AFRICAN REVIEW OF PHYSICS, 2020, 15 : 1 - 11
  • [48] Approximate solutions of the Klein-Gordon equation with unequal scalar and vector modified Hylleraas potential
    Antia, A. D.
    Ikot, A. N.
    Akpan, I. O.
    Awoga, O. A.
    INDIAN JOURNAL OF PHYSICS, 2013, 87 (02) : 155 - 160
  • [49] Approximate Solution of D-Dimensional Klein-Gordon Equation with Hulthn-Type Potential via SUSYQM
    H.Hassanabadi
    S.Zarrinkamar
    H.Rahimov
    Communications in Theoretical Physics, 2011, 56 (09) : 423 - 428
  • [50] Exact Solutions of D-Dimensional Klein–Gordon Equation with an Energy-Dependent Potential by Using of Nikiforov–Uvarov Method
    H. Hassanabadi
    S. Zarrinkamar
    H. Hamzavi
    A. A. Rajabi
    Arabian Journal for Science and Engineering, 2012, 37 : 209 - 215