Analytical study of D-dimensional fractional Klein–Gordon equation with a fractional vector plus a scalar potential

被引:0
|
作者
Tapas Das
Uttam Ghosh
Susmita Sarkar
Shantanu Das
机构
[1] Kodalia Prasanna Banga High School (H.S),Department of Applied Mathematics
[2] University of Calcutta,undefined
[3] Reactor Control System Design Section (E & I Group),undefined
[4] Bhabha Atomic Research Centre,undefined
来源
Pramana | 2020年 / 94卷
关键词
Fractional Klein–Gordon equation; power series method; fractional Coulomb potential; Mittag–Leffler function; 02.30.–f; 03.65.Db; 03.65.Ge; 02.30.Rz;
D O I
暂无
中图分类号
学科分类号
摘要
D-dimensional fractional Klein–Gordon equation with fractional vector and scalar potential has been studied. Both fractional potentials are taken as attractive Coulomb-type with different multiplicative parameters, namely v and s. Jumarie-type definitions for fractional calculus have been used. We have succeeded in achieving Whittaker-type classical differential equation in fractional mode for the required eigenfunction. Fractional Whittaker equation has been manipulated using the behaviour of the eigenfunction at asymptotic distance and origin. This manipulation delivers fractional-type confluent hypergeometric equation to solve. Power series method has been employed to do the task. All the obtained results agree with the existing results in literature when fractional parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is unity. Finally, we furnish numerical results with a few eigenfunction graphs for different spatial dimensions and fractional parameters.
引用
收藏
相关论文
共 50 条
  • [21] Approximate solutions of D-dimensional Klein–Gordon equation with Yukawa potential via Nikiforov–Uvarov method
    Etido P. Inyang
    Ephraim P. Inyang
    Joseph E. Ntibi
    Etebong E. Ibekwe
    Eddy S. William
    Indian Journal of Physics, 2021, 95 : 2733 - 2739
  • [22] Exact solution of Klein-Gordon equation in fractional-dimensional space
    Merad, H.
    Merghadi, F.
    Merad, A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2021, 36 (33):
  • [23] Fractal-fractional Klein-Gordon equation: A numerical study
    Partohaghighi, Mohammad
    Mirtalebi, Zahrasadat
    Akgul, Ali
    Riaz, Muhammad Bilal
    RESULTS IN PHYSICS, 2022, 42
  • [24] Fractional Klein-Gordon equation with singular mass
    Altybay, Arshyn
    Ruzhansky, Michael
    Sebih, Mohammed Elamine
    Tokmagambetov, Niyaz
    CHAOS SOLITONS & FRACTALS, 2021, 143
  • [25] Analytical approximate solution for nonlinear space-time fractional Klein Gordon equation
    Khaled A. Gepreel
    Mohamed S. Mohameda
    ChinesePhysicsB, 2013, 22 (01) : 33 - 38
  • [26] Analytical solution for the dynamics and optimization of fractional Klein–Gordon equation: an application to quantum particle
    Kashif Ali Abro
    Ambreen Siyal
    Abdon Atangana
    Qasem M. Al-Mdallal
    Optical and Quantum Electronics, 2023, 55
  • [27] CONFORMABLE FRACTIONAL DERIVATIVE AND ITS APPLICATION TO FRACTIONAL KLEIN-GORDON EQUATION
    Wang, Kangle
    Yao, Shaowen
    THERMAL SCIENCE, 2019, 23 (06): : 3745 - 3749
  • [28] Fractional Klein-Gordon equation for linear dispersive phenomena: analytical methods and applications
    Garra, Roberto
    Polito, Federico
    Orsingher, Enzo
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [29] Approximate solutions of the Klein–Gordon equation with unequal scalar and vector modified Hylleraas potential
    A. D. Antia
    A. N. Ikot
    I. O. Akpan
    O. A. Awoga
    Indian Journal of Physics, 2013, 87 : 155 - 160
  • [30] Approximate Solution of D-Dimensional Klein-Gordon Equation with Hulthen-Type Potential via SUSYQM
    Hassanabadi, H.
    Zarrinkamar, S.
    Rahimov, H.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (03) : 423 - 428