Analytical study of D-dimensional fractional Klein–Gordon equation with a fractional vector plus a scalar potential

被引:0
|
作者
Tapas Das
Uttam Ghosh
Susmita Sarkar
Shantanu Das
机构
[1] Kodalia Prasanna Banga High School (H.S),Department of Applied Mathematics
[2] University of Calcutta,undefined
[3] Reactor Control System Design Section (E & I Group),undefined
[4] Bhabha Atomic Research Centre,undefined
来源
Pramana | 2020年 / 94卷
关键词
Fractional Klein–Gordon equation; power series method; fractional Coulomb potential; Mittag–Leffler function; 02.30.–f; 03.65.Db; 03.65.Ge; 02.30.Rz;
D O I
暂无
中图分类号
学科分类号
摘要
D-dimensional fractional Klein–Gordon equation with fractional vector and scalar potential has been studied. Both fractional potentials are taken as attractive Coulomb-type with different multiplicative parameters, namely v and s. Jumarie-type definitions for fractional calculus have been used. We have succeeded in achieving Whittaker-type classical differential equation in fractional mode for the required eigenfunction. Fractional Whittaker equation has been manipulated using the behaviour of the eigenfunction at asymptotic distance and origin. This manipulation delivers fractional-type confluent hypergeometric equation to solve. Power series method has been employed to do the task. All the obtained results agree with the existing results in literature when fractional parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is unity. Finally, we furnish numerical results with a few eigenfunction graphs for different spatial dimensions and fractional parameters.
引用
收藏
相关论文
共 50 条
  • [1] Analytical study of D-dimensional fractional Klein-Gordon equation with a fractional vector plus a scalar potential
    Das, Tapas
    Ghosh, Uttam
    Sarkar, Susmita
    Das, Shantanu
    PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [2] Analytical study on the balancing principle for the nonlinear Klein?Gordon equation with a fractional power potential
    Pinar, Zehra
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2020, 32 (03) : 2190 - 2194
  • [3] Analytical solutions of D-dimensional Klein-Gordon equation with modified Mobius squared potential
    Onyenegecha, C. P.
    Opara, A. I.
    Njoku, I. J.
    Udensi, S. C.
    Ukewuihe, U. M.
    Okereke, C. J.
    Omame, A.
    RESULTS IN PHYSICS, 2021, 25
  • [4] Analytical solutions for the fractional Klein-Gordon equation
    Kheiri, Hosseni
    Shahi, Samane
    Mojaver, Aida
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2014, 2 (02): : 99 - 114
  • [5] EXACT BOUND STATES OF THE D-DIMENSIONAL KLEIN-GORDON EQUATION WITH EQUAL SCALAR AND VECTOR RING-SHAPED PSEUDOHARMONIC POTENTIAL
    Ikhdair, Sameer M.
    Sever, Ramazan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2008, 19 (09): : 1425 - 1442
  • [6] The Klein-Gordon equation with a coulomb plus scalar potential in D dimensions
    Ma, ZQ
    Dong, SH
    Gu, XY
    Yu, JA
    Lozada-Cassou, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2004, 13 (03): : 597 - 610
  • [7] The analytical resolution of Klein-Gordon equation with vector and scalar for Coulomb plus Yukawa potentials
    Reggab, Khalid
    MODERN PHYSICS LETTERS A, 2024, 39 (37)
  • [8] Analytical study of time-fractional order Klein-Gordon equation
    Tamsir, Mohammad
    Srivastava, Vineet K.
    ALEXANDRIA ENGINEERING JOURNAL, 2016, 55 (01) : 561 - 567
  • [9] A numerical study on the nonlinear fractional Klein–Gordon equation
    Mulimani M.
    Kumbinarasaiah S.
    Journal of Umm Al-Qura University for Applied Sciences, 2024, 10 (1): : 178 - 199
  • [10] Approximate Solutions of D-Dimensional Klein-Gordon Equation with modified Hylleraas Potential
    Ikot, Akpan N.
    Awoga, Oladunjoye A.
    Antia, Akaninyene D.
    Hassanabadi, Hassan
    Maghsoodi, Elham
    FEW-BODY SYSTEMS, 2013, 54 (11) : 2041 - 2051