Generalized Symmetric Polynomials and an Approximate De Finetti Representation

被引:0
|
作者
Sergey G. Bobkov
机构
[1] University of Minnesota,School of Mathematics
来源
关键词
Symmetric polynomials; quadratic; induction; de Finetti representation;
D O I
暂无
中图分类号
学科分类号
摘要
For probability measures on product spaces which are symmetric under permutations of coordinates, we study the rate of approximation by mixtures of product measures.
引用
收藏
页码:399 / 412
页数:13
相关论文
共 50 条
  • [21] ON THE SYMMETRIC PROPERTIES FOR THE GENERALIZED TWISTED GENOCCHI POLYNOMIALS
    Rim, Seog-Hoon
    Jeong, Joo-Hee
    Lee, Sun-Jung
    Moon, Eun-Jung
    Jin, Joung-Hee
    [J]. ARS COMBINATORIA, 2012, 105 : 267 - 272
  • [22] SOME GENERALIZED SYMMETRIC Q-POLYNOMIALS
    REID, LJ
    [J]. MATHEMATISCHE NACHRICHTEN, 1971, 49 (1-6) : 149 - &
  • [23] Approximate representation of the de Sitter group
    Ibragimov, Nail H.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (01) : 329 - 346
  • [24] Rates of convergence in de Finetti's representation theorem, and Hausdorff moment problem
    Dolera, Emanuele
    Favaro, Stefano
    [J]. BERNOULLI, 2020, 26 (02) : 1294 - 1322
  • [25] The de Finetti transform
    Press, SJ
    [J]. MAXIMUM ENTROPY AND BAYESIAN METHODS, 1996, 79 : 101 - 108
  • [26] Knot polynomials in the first non-symmetric representation
    Anokhina, A.
    Mironov, A.
    Morozov, A.
    Morozov, And.
    [J]. NUCLEAR PHYSICS B, 2014, 882 : 171 - 194
  • [27] SYMMETRIC POLYNOMIALS FOR 2D SHAPE REPRESENTATION
    Negrinho, Renato M. P.
    Aguiar, Pedro M. Q.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 4732 - 4736
  • [28] De Finetti on uncertainty
    Feduzi, Alberto
    Runde, Jochen
    Zappia, Carlo
    [J]. CAMBRIDGE JOURNAL OF ECONOMICS, 2014, 38 (01) : 1 - 21
  • [29] Representation of umemura polynomials for the sixth Painleve equation by the generalized Jacobi polynomials
    Taneda, M
    [J]. PHYSICS AND COMBINATORICS 1999, 2001, : 366 - 376
  • [30] Lambek Functional Representation of Generalized Symmetric Semirings
    E. M. Vechtomov
    V. V. Chermnykh
    [J]. Russian Mathematics, 2023, 67 : 23 - 31