Rates of convergence in de Finetti's representation theorem, and Hausdorff moment problem

被引:4
|
作者
Dolera, Emanuele [1 ]
Favaro, Stefano [1 ,2 ,3 ]
机构
[1] Univ Pavia, Dept Math, I-27100 Pavia, Italy
[2] Univ Torino, Dept Econ & Stat, I-10134 Turin, Italy
[3] Coll Carlo Alberto, I-10134 Turin, Italy
基金
欧洲研究理事会;
关键词
de Finetti's law of large numbers; de Finetti's representation theorem; Edgeworth expansions; exchangeability; Hausdorff moment problem; Kolmogorov distance; Wasserstein distance; EQUILIBRIUM;
D O I
10.3150/19-BEJ1156
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given a sequence {X-n}(n >= 1) of exchangeable Bernoulli random variables, the celebrated de Finetti representation theorem states that 1/n Sigma(n)(i)=1(X)i ->(a.s.) Y for a suitable random variable Y : Omega -> [0, 1] satisfying P[X-1 = x(1), ..., X-n = x(n)[Y] = Y(Sigma)i(n)=1 x(i) (1 - Y)(n)-Sigma(i)(=1)nx(i). In this paper, we study the rate of convergence in law of 1/n Sigma(i)(=1)nX(i) to Y under the Kolmogorov distance. After showing that a rate of the type of 1/n(alpha )can be obtained for any index alpha is an element of (0, 1], we find a sufficient condition on the distribution of Y for the achievement of the optimal rate of convergence, that is 1/n. Besides extending and strengthening recent results under the weaker Wasserstein distance, our main result weakens the regularity hypotheses on Y in the context of the Hausdorff moment problem.
引用
收藏
页码:1294 / 1322
页数:29
相关论文
共 50 条
  • [1] On the rate of convergence in de Finetti's representation theorem
    Mijoule, Guillaume
    Peccati, Giovanni
    Swan, Yvik
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2016, 13 (02): : 1165 - 1187
  • [2] The Markov moment problem and de Finetti’s theorem: Part II
    Persi Diaconis
    David Freedman
    [J]. Mathematische Zeitschrift, 2004, 247 : 201 - 212
  • [3] The Markov moment problem and de Finetti's theorem: Part II
    Diaconis, P
    Freedman, D
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2004, 247 (01) : 201 - 212
  • [4] The Markov moment problem and de Finetti's theorem: Part I
    Diaconis P.
    Freedman D.
    [J]. Mathematische Zeitschrift, 2004, 247 (1) : 183 - 199
  • [5] De Finetti representation theorem for quantum-process tomography
    Fuchs, CA
    Schack, R
    Scudo, PF
    [J]. PHYSICAL REVIEW A, 2004, 69 (06): : 062305 - 1
  • [6] Quantum de Finetti theorem in phase-space representation
    Leverrier, Anthony
    Cerf, Nicolas J.
    [J]. PHYSICAL REVIEW A, 2009, 80 (01):
  • [7] The strength of de Finetti’s coherence theorem
    Michael Nielsen
    [J]. Synthese, 2021, 198 : 11713 - 11724
  • [8] Strong stationarity and de Finetti's theorem
    Jenvey, E
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1997, 73 (1): : 1 - 18
  • [9] Strong stationarity and de Finetti’s theorem
    E. Jenvey
    [J]. Journal d’Analyse Mathématique, 1997, 73 : 1 - 18
  • [10] The strength of de Finetti's coherence theorem
    Nielsen, Michael
    [J]. SYNTHESE, 2021, 198 (12) : 11713 - 11724