The Abelian/Nonabelian correspondence and Frobenius manifolds

被引:0
|
作者
Ionuţ Ciocan-Fontanine
Bumsig Kim
Claude Sabbah
机构
[1] University of Minnesota,School of Mathematics
[2] Korea Institute for Advanced Study,School of Mathematics
[3] École polytechnique,UMR 7640 du C.N.R.S., Centre de mathématiques Laurent Schwartz
来源
Inventiones mathematicae | 2008年 / 171卷
关键词
Line Bundle; Cohomology Class; Maximal Torus; Equivariant Cohomology; Quantum Cohomology;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an approach via Frobenius manifolds to the study (began in [BCK2] of the relation between rational Gromov–Witten invariants of nonabelian quotients X//G and those of the corresponding “abelianized” quotients X//T, for T a maximal torus in G. The ensuing conjecture expresses the Gromov–Witten potential of X//G in terms of the potential of X//T. We prove this conjecture when the nonabelian quotients are partial flag manifolds.
引用
收藏
页码:301 / 343
页数:42
相关论文
共 50 条
  • [41] A CLASS OF ABELIAN MANIFOLDS
    GHERARDELLI, F
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1989, 3A (01): : 125 - 132
  • [42] KNOTS OF ABELIAN MANIFOLDS
    MORETBAILLY, L
    ASTERISQUE, 1985, (129) : 1 - &
  • [43] DIVISORS OF ABELIAN MANIFOLDS
    KIEHL, R
    ARCHIV DER MATHEMATIK, 1968, 19 (02) : 131 - &
  • [44] ON RANK OF ABELIAN MANIFOLDS
    BASHMAKO.MI
    DOKLADY AKADEMII NAUK SSSR, 1968, 181 (05): : 1031 - &
  • [45] From uncountable abelian groups to uncountable nonabelian groups
    Eda, Katsuya
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2020, 144 : 105 - 114
  • [46] ENDOMORPHISMS OF ABELIAN MANIFOLDS
    FLEXOR, M
    ASTERISQUE, 1985, (127) : 235 - 248
  • [47] Modular Frobenius Manifolds and their Invariant Flows
    Morrison, Ewan K.
    Strachan, Ian A. B.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (17) : 3957 - 3982
  • [48] A Remark on Deformations of Hurwitz Frobenius Manifolds
    Alexandr Buryak
    Sergey Shadrin
    Letters in Mathematical Physics, 2010, 93 : 243 - 252
  • [49] Frobenius Statistical Manifolds and Geometric Invariants
    Combe, Noemie
    Combe, Philippe
    Nencka, Hanna
    GEOMETRIC SCIENCE OF INFORMATION (GSI 2021), 2021, 12829 : 565 - 573
  • [50] Linear free divisors and Frobenius manifolds
    de Gregorio, Ignacio
    Mond, David
    Sevenheck, Christian
    COMPOSITIO MATHEMATICA, 2009, 145 (05) : 1305 - 1350